:n"'jLJ_u_- --I:
P THH

S

o Gujarat Madhya Pradesh

X Orissa
Tiadra and#agar Haveli

R il § LA

ArcGIS™ 8.3

Copyright © 2001-2002 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable
international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying or recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, 11, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, ArcView, ArcSDE, SDE, MapObjects, Arclnfo, ArcCatalog, ArcMap, ArcToolbox, ArcStorm,
ArcGIS, Arclnfo, and Spatial Database Engine, and www.esri.com are trademarks, registered trademarks,
or service marks of ESRI in the United States, the European Community, or certain other jurisdictions.

Other companies and products mentioned herein are trademarks or registered trademarks of their respective
trademark owners.

Contents

Contents

Getting started

Some tuning tips

Arranging your data

Creating spatial data in a DB2 database

Essential configuring and tuning
How much time should you spend tuning?
Reducing disk I/O contention

Updating DB?2 statistics

Tuning the spatial index

Configuring DBTUNE storage parameters
The DBTUNE table

Arranging storage parameters by keyword

Defining the storage parameters

DB2 default parameters

Editing the DBTUNE table

The complete list of ArcSDE 8.3 storage parameters

Managing tables, feature classes, and raster columns

Data creation

Creating and populating raster columns

Creating views

Exporting data

Schema modification

Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications

Storing raster data
Raster schema

DB2 Spatial Extender geometry types
Spatial Extender data types
Instantiable subclasses

Index

N — = -

AN A WW

CHAPTER 1

Getting started

ESRI® ArcSDE™ for DB2" allows you to store geographic data in a DB2 database and requires,
like any other application of DB2, consideration for configuring and tuning the data stored. This
document explains how to use ArcSDE and its applications to create, store, and index the spatial
data in a DB2 database.

Some tuning tips

Chapter 2, ‘Essential configuring and tuning’, provides a brief overview of proper container placement to minimize
the impact of disk I/O contention. Also, the proper selection of the grid cell sizes for the construction of the spatial
index is discussed.

Arranging your data

Every table and index created in a database has a storage configuration. How you store your tables and indexes affects
your database's performance.

DBTUNE storage parameters

How is the storage configuration of the tables and indexes controlled? ArcSDE reads storage parameters from the
DBTUNE table to define physical data storage parameters of ArcSDE tables and indexes. The storage parameters are
grouped into configuration keywords. You assign configuration keywords to your data objects (tables and indexes)
when you create them from an ArcSDE client program.

Prior to ArcSDE 8.1, configuration keywords were stored in a dbtune.sde file maintained under the ArcSDE etc
directory. The dbtune.sde file is still used by ArcSDE 8.3 as the initial source of storage parameters. When the
ArcSDE 8.3 sdesetupdb2 command executes, the configuration parameters are read from the dbtune.sde file and
written into the DBTUNE table.

It should also be noted that ArcSDE 8.3 has simplified the storage parameters. Rather than matching each DB2
storage parameter with an ArcSDE storage parameter, the ArcSDE storage parameters have evolved into
configuration strings and represent the entire storage configuration for a table or index. The ArcSDE storage
parameter holds all the DB2 storage parameters of a DB2 CREATE TABLE or CREATE INDEX statement. Pre-
ArcSDE 8.1 DB2 storage parameters are ignored.

2 ArcSDE Configuration and Tuning Guide for DB2

The sdedbtune command has been introduced at ArcSDE 8.2 to provide the ArcSDE administrator with an easy way
to maintain the DBTUNE table. The sdedbtune command exports and imports the records of the DBTUNE table to a
file in the ArcSDE etc directory.

The ArcSDE 8.3 installation creates the DBTUNE table. If the dbtune.sde file is absent or empty, sdesetupdb2 creates
the DBTUNE table and populates it with default configuration keywords representing the minimum ArcSDE
configuration.

In almost all cases, you will populate the table with specific storage parameters for your database. Chapter 3,
‘Configuring DBTUNE storage parameters’, describes in detail the DBTUNE table and all possible storage
parameters and default configuration keywords.

Creating spatial data in a DB2 database

ArcCatalog™ and ArcToolbox™ are graphical user interfaces (GUIs) specifically designed to simplify the creation
and management of a spatial database. These applications provided the easiest method for creating spatial data in a
DB2 database. With these tools you can convert existing ESRI coverages and shapefile format into ArcSDE feature
classes. You can also import an existing ArcSDE export file containing the data of a business table, feature class, or
raster column.

Multiversioned ArcSDE data can be edited directly with either ArcCatalog or ArcMap™. An alternative approach to
creating spatial data in a DB2 database is to use the administration tools provided with ArcSDE.

Chapter 4, ‘Managing tables, feature classes, and raster columns’, describes the methods used to create and maintain
spatial data in a DB2 database.

CHAPTER 2

Essential configuring and
tuning

The performance of an ArcSDE service depends to some extent on how well
you configure and tune your DB2 instance. This chapter discusses the basic
approach to database management system (DBMS) tuning and provides some

instruction on tuning the DB2 Spatial Extender’s spatial index.

How much time should you spend tuning?

The appreciable difference between a well-tuned database and one that is not depends on how
it is used. A database created and used by a single user does not require as much tuning as a
database that is in constant use by many users. The reason is quite simple—the more people
using a database, the greater the contention for its resources.

By definition, tuning is the process of sharing resources among users by configuring the
components of a database to minimize contention and remove bottlenecks. The more people
you have accessing your databases, the more effort is required to provide access to a finite
resource.

A well-tuned DB2 database makes optimum use of available CPU and memory while
minimizing disk input/output (I/O) contention. Database administrators approach this task
knowing that each additional hour spent will often return a lesser gain in performance.
Eventually, they reach a point of diminishing returns, where it is impractical to continue
tuning; instead, they continue to monitor the server and address performance issues as they
arise.

Reducing disk I/O contention

Disk I/O contention provides the most challenging performance bottleneck. Other than
purchasing faster disk drives and additional network cards, the solution to this problem lies in
minimizing disk I/O and balancing it throughout the file system—reducing the possibility of
one process waiting for another to complete its I/O request. This is often referred to as
“waiting on I/O”".

4

ArcSDE Configuration and Tuning Guide for DB2

Arranging the database components

Minimizing disk I/O contention is achieved by balancing disk I/O across the file system—
positioning frequently accessed “hot” files with infrequently accessed “cold” files. Estimate
the size of all the database components and determine their relative rates of access. Position
the components given the amount of disk space available and the size and number of disk
drives. Diagramming the disk drives and labeling them with the components help keep track
of the location of each component. Have the diagram handy when you create the DB2
database.

Separate tables from their indexes

Each time DB2 accesses an index to locate a row, it must access the table to fetch the
referenced row. The disk head travels between the index and the table if they are stored on the
same disk.

Whenever possible, store indexes and tables in different tablespaces so you can store them on
different disk drives, thus eliminating repetitive and costly disk head travel.

Establish the threshold table size

As arule, store small tables together in the same tablespace and large tables by themselves in
their own tablespaces. Decide how large a table must be before it requires its own tablespace.
Generally, the threshold data object size corresponds in part to the maximum container size.
Tables capable of filling the maximum size container should be stored in their own tablespace.
Tables approaching this limit should also be considered. Follow the same policy for indexes.

Separate the tables and indexes into those that require their own tablespaces and those that
will be grouped together. Never store tables and their indexes together in the same tablespace.

Store small tables and indexes by access

Base the decision of which small tables to store together in the same tablespace on expected
access. Store tables of high access in one tablespace and tables of low access in another.
Doing so allows you to position the containers of the high access tablespaces with low access
containers. This same rule applies to indexes. They, too, should be divided by access.

Positioning the files

Once you have estimated the size of the containers, determine where to position them on the
file system. This section provides a list of guidelines that you may not be able to follow in its
entirety, given the number and size of your disk drives.

Updating DB2 statistics

For the best performance, the statistics of the ArcSDE tables and indexes that you have stored
in DB2 must be kept up-to-date.

Chapter 2 Essential configuring and tuning 5

In ArcCatalog, to update the statistics of all of the tables and indexes within a feature dataset,
right-click on the feature dataset and click Analyze. To update the tables and indexes within a
feature class, right-click on the feature class and click Analyze.

,:I AircCatalog - Arcinfo - Database ConnectionsiConnection to kanada.sde

File Edit “iew Go Tools Help

J
||| 2R X
J
J

Belasv | eaae|o x|

T
- =+

Lacation: |Dalabase ConnectionshConnection to kanada. sde j
Stgleshest [E571 7l sl |
=l Cantents | Prewewl Matadatal
@ Catalag i I = I
& T e . e
@ s Encodmg Services Geocoding Services Folder
E| EQ Database Carnections FANADA.SMP_BLOB SDE Table
| -39 Add OLE DB Connection [EEl'WORLD BIGTEST SDE Table

23 Add Spatial Database Cornection Rl e SDE Table
Connection ta jozeph) Copy Cirl+C SDE Table
2 Connection to kanada . Delete SDE Table

Geocoding Services Berame SDE Table
el Intermet Servers — SDE Table
F-EE Search Feslts FReqister with Geodatabase SDE Table

E FReaister 4s Yersioned SDE Table

Export »

Create Feature Class »

Load Data...

C.I‘ﬁ Geocode Addresses..
Privileges
Properties

Analyze the dataset to update the DBMS statistics o A

From the command line, use the UPDATE _DBMS_STATS operation of the sdetable
administration command to update the statistics for all the tables and indexes of a feature
class. It is better to use the sdetable UPDATE DBMS_STATS operation rather than
individually analyzing the tables with the DB2 RUNSTATS statement because it updates the
statistics for all tables of a feature class. In addition to the business table, an ArcSDE for DB2
feature class may include an adds and deletes table as well.

To have the UPDATE DBMS STATS operation update the statistics for all the required
tables, do not specify the -K (schema object) option.

sdetable -0 update_dbms_stats -t roads -m compute -u av -p mo

When the feature class is registered as multiversioned, the ‘adds’ and ‘deletes’ tables are
created to hold the business table’s added and deleted records. The version registration
process automatically updates the statistics for all the required tables at the time it is
registered.

Periodically update the statistics of dynamic tables and indexes to ensure that the DB2
optimizer continues to choose an optimum execution plan. To save time, you can update the
statistics of all the data objects within a feature dataset in ArcCatalog.

If you decide to update the statistics of all or some of the feature class tables with the DB2
RUNSTATS statement, use the following syntax:

RUNSTATS ON TABLE <table_name> WITH DISTRIBUTION AND DETAILED INDEXES ALL

6

ArcSDE Configuration and Tuning Guide for DB2

For more information on the DB2 SQL RUNSTATS statement, refer to the /BM DB2
Universal Database Command Reference.

The statistics of a table’s indexes are automatically computed when the table is analyzed, so
there is no need to analyze the indexes separately. However, if you need to do so you can use
the UPDATE DBMS STATS -n option with the index name.

The example below illustrates how the statistics for the roads_ix index of the roads table can
be updated.

sdetable -o update_dbms_stats -t roads -n roads_ix -u av -p mo
For more information on analyzing geodatabase objects from ArcCatalog, refer to Building a

Geodatabase.

For more information on the sdetable administration command and the
UPDATE DBMS_STATS operation, refer to ArcSDE Developer Help.

Tuning the spatial index

Applications querying the two-dimensional geographic data contained in a spatial column
require an index strategy that will quickly identify all geometries lying within a given extent.
For this reason the Spatial Extender provides the three-tiered grid spatial index.

The two-dimensional spatial index differs from the traditional hierarchical Btree index
provided by DB2. To better understand the difference, first review how a Btree index is
structured and used.

The top level of a Btree index called the root node contains one key for each node at the next
level. The value of each of these keys is the largest existing key value for the corresponding
node at the next level. Depending on the number of values in the base table, several
intermediate nodes may be needed to bridge the root node with the leaf nodes, which hold the
actual base table row IDs.

The DB2 database manager searches a Btree index starting at the root node, working its way
through the intermediate nodes until it reaches the leaf node with the row ID of the base table.

The Btree index may not be applied to a spatial column because the two-dimensional
characteristic of the spatial column requires the structure of a spatial index. For the same
reason, you may not apply a spatial index to a nonspatial column, and a spatial index may not
be applied to a composite column of any kind.

The spatial index’s CREATE INDEX syntax includes the additional USING clause, which directs
DB?2 to use the Spatial Extender’s spatial index rather than a Btree index. The full syntax is as
follows:

create index <index_name> on <table> (<spatial column>)
using db2gse.spatial_index (<grid level 1>, [grid level 2] , [grid level 3])

The addition of the USING clause distinguishes the spatial index from the Btree index. The
db2gse owner of the Spatial Extender functionality must qualify the spatial index index
extension name as this statement does not follow the current function path.

Chapter 2 Essential configuring and tuning 7

Because of the simple nature of the data a Btree was designed to index, the database designer
merely directs DB2 to create the index on one or more table columns. Spatial data being
complex requires the designer to understand its relative size distribution. The designer must
determine the optimum size and number of the spatial index’s grid levels.

The grid levels (<grid level 1>, [grid level 2], [grid level 3]) are entered by increasing cell
size. Thus the second level must have a larger cell size than the first and the third a larger cell
size than the second. The first grid level is mandatory, but you may disable the second and
third with a zero value (0).

How the Spatial Extender generates a spatial index

The DB2 Spatial Extender constructs a spatial index as follows:

1. The Spatial Extender intersects each geometry’s envelope with the grid starting with the
first level.

2. Ifless than four intersections occur with the first grid level, the Spatial Extender enters
the geometry ID and the intersecting grid cell IDs in the spatial index and continues with
the next geometry.

3. Ifthe Spatial Extender detects more than four intersections, it intersects the geometry
with the second grid level. If you have not enabled the second grid level, the Spatial
Extender enters the geometry ID and grid cell IDs in the spatial index and continues with
the next geometry.

4. If less than four intersections occur with the second grid level, the Spatial Extender enters
the geometry ID and the intersecting grid cell IDs in the spatial index and continues with
the next geometry.

5. Ifthe Spatial Extender detects more than four intersections, it intersects the geometry
with the third grid level. If you have not enabled the third grid level, the Spatial Extender
enters the geometry ID and grid cell IDs in the spatial index and continues with the next

geometry.

6. The Spatial Extender enters the geometry ID and the intersecting grid cell IDs of the third
level in the spatial index and continues with the next geometry.

The Spatial Extender does not actually create polygon grid structure of any sort. The Spatial
Extender manifests each grid level parametrically by defining the origin as the x,y offsets of
the column’s spatial reference system extending into positive coordinate space. Using a
parametric grid the Spatial Extender generates the intersections mathematically.

How the Spatial Extender uses the spatial index

The Spatial Extender uses a spatial index to improve the performance of a spatial query.
Consider the box query—the most basic and probably most popular spatial query. The box
query returns geometries of a spatial column that intersect a user-defined box. If a spatial
index does not exist, the Spatial Extender must compare all of a spatial column’s geometries
with the box.

8

ArcSDE Configuration and Tuning Guide for DB2

Using the spatial index, the Spatial Extender identifies index grid entries that intersect the box.
Since the spatial index is ordered on grid, the Spatial Extender quickly obtains a list of
candidate geometries. The process just described is referred to as the first pass.

A second pass disqualifies candidate geometries whose envelope does not intersect the box.

A third pass compares the actual coordinates of the candidate geometry with the box to
determine whether or not the geometry intersects the box. This last complex process of
comparison operates on a subset of the table rows, significantly reduced by the first two
passes.

All spatial queries perform the three passes with the exception of the SE_EnvelopesIntersect
function. It performs only the first two passes and was designed for display operations that use
display driver clipping routines and that don’t require the granularity of the third pass.

Selecting the optimum grid cell sizes

Selecting the grid cell size is complicated by the fact that envelopes of irregularly shaped
geometries do not fit neatly within a grid cell. Because of this irregularity, some geometry
envelopes intersect several grids, while others fit inside a single grid cell. On the flip side, grid
cells may intersect several geometry envelopes depending on the spatial distribution of the
data.

A spatial index performs well when you enable the correct number of levels and their grid cell
sizes to ‘fit’ the data. To simplify this discussion, first consider a spatial column containing
geometry whose size is uniform. In this case, it is not necessary to create a multileveled spatial
index since a single grid level will suffice. Create a spatial index with a single grid level
whose grid cell size is 1.5 times the size of the average geometry envelope.

While testing your application, you may find that it performs better with a larger grid cell size
because each grid cell references more geometries, enabling the first pass to discard
nonqualifying geometries faster. However, if you continue to increase the grid cell size,
performance deteriorates as the number of geometries filtered by the second pass increases.

Selecting the number of levels

Few spatial columns contain geometry of the same relative size. However, geometries of most
spatial columns can be grouped into size intervals. For instance, consider a spatial column of
county parcels containing a vast number of small parcels clustered in the urban areas
surrounded by a few large rural parcels. These situations are very common and require the use
of a multilevel spatial index. To select the grid cell sizes of each level, determine the intervals
of geometry envelope sizes. Create a spatial index with grid level cell sizes slightly larger than
each interval. Test the index by performing queries against the spatial column using your
application. Try adjusting the grid sizes up or down slightly to determine if an appreciable
improvement in performance can be obtained.

Chapter 2 Essential configuring and tuning

1

CHAPTER 3

Configuring DBTUNE storage
parameters

DBTUNE storage parameters allow you to control how ArcSDE clients
create objects within a DB2 database. They determine such things as which
tablespace a table or index is created in. The storage parameters define the
size of the data objects they store as well as other DB2-specific storage
attributes.

The DBTUNE table

The DBTUNE storage parameters are maintained in the DBTUNE metadata table. The
DBTUNE table, along with all other metadata tables, is created during the setup phase that
follows the installation of the ArcSDE software.

The DBTUNE table has the following definition:

Name Null? Datatype
keyword not null varchar(32)
parameter_name not null varchar(32)
config_string null varchar(2048)

The keyword field stores the keywords. Within each keyword, there are a number of storage
parameters, and the names of these are stored in the parameter name field. Each storage
parameter has a configuration string associated with it, and this is stored in the config_string
field.

After creating the DBTUNE table, the setup phase of the ArcSDE 8.3 installation populates
the table with the contents of the dbtune.sde file, which it expects to find under the etc
directory of the SDEHOME directory.

If the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents
should you decide to run it again.

12 ArcSDE Configuration and Tuning Guide for DB2

Arranging storage parameters by keyword

Storage parameters of the DBTUNE table are grouped by keyword. When the contents of the
DBTUNE table are exported to a file, the keywords are prefixed by two pound signs “##”.
The ‘END’ clause terminates each keyword.

Keywords define the storage configuration of simple objects such as tables and indexes and
complex objects such as feature classes, network classes, and raster columns. ESRI client
applications and some ArcSDE administration tools assign DBTUNE keywords to these
objects. The pound signs ‘##’ are not included when the keywords are assigned.

DEFAULTS keyword

Each DBTUNE table has a fully populated DEFAULTS keyword. The DEFAULTS
keyword can be selected whenever you create a table, index, feature class, or raster column.
If you do not select a keyword for one of these objects, the DEFAULTS keyword is used. If
you do not include a storage parameter in a keyword you have defined, ArcSDE substitutes
the storage parameter from the DEFAULTS keyword.

The DEFAULTS keyword relieves you of the need to define all the storage parameters for
each of your keywords. The storage parameters of the DEFAULTS keyword should be
populated with values that represent the average storage configuration of your data.

During installation, if the ArcSDE software detects a missing DEFAULTS keyword storage
parameter in the dbtune.sde file, it automatically adds the storage parameter. If you import a
DBTUNE file with the sdedbtune command, the command automatically adds default
storage parameters that are missing. ArcSDE will detect the presence of the following list of
storage parameters and insert the storage parameter and the default configuration string.

##DEFAULTS

A_INDEX_ROWID

A_INDEX_STATEID

A_INDEX_USER

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN
<TABLESPACE>"

B_INDEX_ROWID

B_INDEX_USER

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN
<TABLESPACE>"

B_RUNSTATS "YES"

#BLK_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN
<TABLESPACE>"

#AUX_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#BND_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#RAS_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

D_INDEX_DELETED AT ™
D_INDEX_STATE_ROWID

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN
<TABLESPACE>"

LOB_OPTION "LOGGED NOT COMPACT"

LOB_SIZE "1M"

UI_TEXT

END

Chapter 3 Configuring DBTUNE storage parameters 13

Setting the default BLOB size

DB?2 requires a size on BLOB column creation.

If a BLOB column is to be created, and it has a size of greater than 2 GB, this size will be
ignored and the default LOB_SIZE parameter of 1 MB will be used. This will allow the DBA
to carefully craft their database parameters.

Setting the B_RUNSTATS parameter
At ArcSDE 8.1.2 a new parameter called B RUNSTATS was added to the dbtune.sde file.

"YES" will be the default if no B RUNSTATS parameter is present in the DEFAULTS
keyword of the dbtune.sde file. B_ RUNSTATS only applies to the business table. This
parameter will be used at the end of a data load, after all the records are inserted, and the
layer is being readied to put into normal_io mode. The last part of switching to the normal io
mode will be the checking of B RUNSTATS. If B RUNSTATS is equal to "YES" or "yes",
then a full runstats will be performed on the table automatically. If it is set to anything else,
then a runstats will not happen. The vast majority of users will want to have the full runstats
done on the table. For those who wish to do something special with it for some reason, like
only do indexes, they can set B RUNSTATS to "NO" and then perform a manual
RUNSTATS command with any options they would like.

Setting the system table DATA_DICTIONARY keyword

During the execution of sdesetupdb2 the ArcSDE and geodatabase system tables and indexes
are created with the storage parameters of the DATA DICTIONARY keyword. You may
customize the keyword in the dbtune.sde file prior to running the sdesetupdb2 tool. In this
way you can change default storage parameters of the DATA DICTIONARY keyword.

Edits to all of the geodatabase system tables and most of the ArcSDE system tables occur
when schema change occurs. As such, edits to these system tables and indexes usually
happen during the initial creation of an ArcGIS™ database with infrequent modifications
occurring whenever a new schema object is added.

Four of the ArcSDE system tables—VERSION, STATES, STATE _LINEAGES, and
MVTABLES MODIFIED—yoatrticipate in the ArcSDE versioning model and record events
resulting from changes made to multiversioned tables. If your site makes extensive use of a
multiversioned database, these tables and their associated indexes are very active. Separating
these objects into their own tablespace allows you to position their data files with data files
that experience low 1/O activity and thus minimize disk I/O contention.

If the dbtune.sde file does not contain the DATA DICTIONARY keyword, or if any of the
required parameters are missing from the keyword, the following records will be inserted into
the DATA DICTIONARY when the table is created. (Note that the DBTUNE file entries are
provided here for readability.)

##DATA_DICTIONARY

B_INDEX_ROWID "
B_INDEX_USER "

14 ArcSDE Configuration and Tuning Guide for DB2

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN
<TABLESPACE>"

#STATES_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
STATES_INDEX

#STATE_LINEAGES_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#VERSIONS_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

VERSIONS_INDEX "

#MVTABLES_MODIFIED_TABLE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
MVTABLES_MODIFIED_INDEX ™

END

THE SURVEY MULTIBINARY KEYWORD

This keyword is used to support 2 BLOB columns on the SDB_<n>_Surveys
table. However, it is mainly meant for Oracle since it cannot have multiple LONG
RAW

Columns in the same business table.

##SURVEY MULTI BINARY
UL_TEXT""
END

The TOPOLOGY keyword

The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS and DIRTYAREAS. An SDE instance
must have a valid topology keyword in the dbtune table, or topology will not be built.

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted during
normal use. The DIRTYAREAS table will reduce in size only when database versions get
compressed.

Because the DIRTYAREAS table is much more active than the remaining topology tables,
the TOPOLOGY keyword may be compound. You may specify the DIRTYAREAS suffix
to list configuration string to be used to create the topology tables.

For DB2, the default values for TOPOLOGY and TOPOLOGY::DIRTYAREAS are

##TOPOLOGY_DEFAULTS

UL TOPOLOGY_TEXT "The topology default configuration"
A_INDEX ROWID "

A_INDEX_SHAPE "

A _INDEX STATEID ""

A_INDEX _USER "

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX ROWID ""

B INDEX SHAPE ""

B_INDEX USER "

#B STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D INDEX DELETED AT "

D _INDEX STATE ROWID ""

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
A_INDEX ROWID ""

Chapter 3 Configuring DBTUNE storage parameters 15

A_INDEX_SHAPE ™"
A_INDEX_STATEID ""

A_INDEX USER "

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX ROWID ""

B_INDEX_SHAPE "

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
D_INDEX_DELETED AT ™

D _INDEX_STATE ROWID ""

#D_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

The IMS METADATA keywords

The IMS METADATA keywords control the storage of the IMS Metadata tables. These
keywords are a standard part of the dbtune table. If the keywords are not present in the
dbtune file when it is imported into the DBTUNE table, ArcSDE applies software defaults.
The software defaults have the same settings as the keyword parameters listed in the
dbtune.sde table that is shipped with ArcSDE. You will need to edit the storage parameters
tablespace names. As always try to separate the tables and indexes into different tablespaces.

For more information about installing IMS Metadata and the associated tables and indexes
refer to ArcIMS Metadata Server documentation.

The IMS metadata keywords are as follows:

The IMS METADATA keyword controls the storage of the ims_metadata feature class.
Four indexes are created on the ims_metadata business table. ArcSDE creates the following
default IMS METADATA keyword in the DBTUNE table if the keyword is missing from
the dbtune file when it is imported.

##IMS_METADATA

B_INDEX ROWID ""

B_INDEX SHAPE "

B_INDEX USER "

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
LOB_OPTION "LOGGED NOT COMPACT"

LOB _SIZE "IM"

COMMENT "The IMS metadata feature class"
UI TEXT "

END

The IMS METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarelationships business table. Three indexes are created on the
ims_metadatarelationships business table. ArcSDE creates the following default
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.

##IMS_METADATARELATIONSHIPS

B_INDEX_ROWID ™

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

16

ArcSDE Configuration and Tuning Guide for DB2

The IMS METADATATAGS keyword controls the storage of the ims_metadatatags
business table. Two indexes are created on the ims_metadatatags business table. ArcSDE
creates the following default IMS METADATATAGS keyword in the DBTUNE table if the
keyword is missing from the dbtune file when it is imported.

##IMS_METADATATAGS

B_INDEX_ROWID ™

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

The IMS_ METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. One index is created on the ims_metadatathumbnails
business table. ArcSDE creates the following default IMS METADATATHUMBNAILS
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is
imported.

##IMS_METADATATHUMBNAILS

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
LOB_OPTION "LOGGED NOT COMPACT"

LOB_SIZE "M
END

The IMS METADATAUSERS keyword controls storage of the ims_metadatausers business
table. One index is created on the ims_metadatausers business table. ArcSDE creates the
following default IMS METADATAUSERS keyword in the DBTUNE table if the keyword
is missing from the dbtune file when it is imported.

##IMS_METADATAUSERS

B_INDEX_ROWID ™

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

The IMS METADATAVALUES keyword controls the storage of the ims_metadatavalues
business table. Two indexes are created on ims_metadatavalues business table. ArcSDE
creates the following default IMS METADATAVALUES keyword in the DBTUNE table if
the keyword is missing from the dbtune file when it is imported.

##MS_METADATAVALUES

B INDEX USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

The IMS METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex business table. ArcSDE creates the following default

IMS METADATAWORDINDEX keyword in the DBTUNE table if the keyword is missing
from the dbtune file when it is imported.

##MS_METADATAWORDINDEX

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

Chapter 3 Configuring DBTUNE storage parameters 17

The IMS METADATAWORDS keyword controls the storage of the ims_metadatawords
business table. One index is created on the ims_metadatawords business table. ArcSDE
creates the following default IMS METADATAWORDS keyword in the DBTUNE table if
the keyword is missing from the dbtune file when it is imported.

##IMS_METADATAWORDS

B_INDEX_ROWID ™

B_INDEX_USER ™

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
END

Changing the appearance of DBTUNE keywords in the Arcinfo
user interface

ArcSDE 8.1 introduces two new storage parameters that will support the ArcInfo™ user
interface UL TEXT and UL NETWORK TEXT. ArcSDE administrators can add one of
these storage parameters to each keyword to communicate to the ArcInfo schema builders the
intended use of the keyword. The configuration string of these storage parameters will appear
in Arclnfo interface DBTUNE keyword scrolling lists.

The UL TEXT storage parameter should be added to keywords that will be used to build
tables, feature classes, and indexes.

The UL NETWORK TEXT storage parameter should be added to parent network keywords.

Adding a comment to a keyword

The COMMENT storage parameter allows you to add informative text that describes such
things as a keyword's intended use, the last time it was changed, or who created it.

LOGFILE keywords

Logfiles are used by ArcSDE to maintain temporary and persistent sets of selected records.
Whenever a user connects to ArcSDE for the first time, the SDE_LOGFILES and
SDE LOGFILE DATA tables and indexes are created.

You may create a keyword for each user that begins with the LOGFILE <username>. For
example, if the user’s name is STANLEY, ArcSDE will search the DBTUNE table for the
LOGFILE_STANLEY keyword. If this keyword is not found, ArcSDE will use the storage
parameters of the LOGFILE DEFAULTS keyword to create the SDE_LOGFILES and
SDE_LOGFILE_DATA tables.

ArcSDE always creates the DBTUNE table with a LOGFILE DEFAULTS keyword. If you
do not specify this keyword in a DBTUNE file imported by the sdedbtune command,
ArcSDE will populate the DBTUNE table with default LOGFILE DEFAULTS storage
parameters. Further, if the DBTUNE file lacks some of the LOGFILE DEFAULTS keyword
storage parameters, ArcSDE supplies the rest. Therefore, the LOGFILE DEFAULTS
keyword is always fully populated.

18

ArcSDE Configuration and Tuning Guide for DB2

If a user-specific keyword exists, but some of the storage parameters are not present, the
storage parameters of the LOGFILE DEFAULTS keyword are used.

Creating a logfile keyword for each user allows you to position their sde logfiles onto
separate devices by specifying the tablespace the logfile tables and indexes are created in.
Most installations of ArcSDE will function well using the LOGFILE_DEFAULTS storage
parameters supplied with the installed dbtune.sde file. However, for applications that make
use of sde logfiles, it may help performance by spreading the logfiles across the file system.

If the imported DBTUNE file does not contain a LOGFILE DEFAULTS keyword, or if any
of the logfile storage parameters are missing, ArcSDE will insert the following records:
##LOGFILE_DEFAULTS

LD_INDEX_DATA_ID
LD_INDEX_ROWID

#LD_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
#LF_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
UI_TEXT "LOGFILES"

END

Defining the storage parameters

Configuration keywords may include any combination of three basic types of storage
parameters: meta parameters, table parameters, and index parameters.

Meta parameters

Meta parameters define the way certain types of data will be stored, the environment of a
keyword, or a comment that describes the keyword.

Table parameters

Table parameters define the storage configuration of a DB2 table. The table parameter is
appended to a DB2 CREATE TABLE statement during its creation by ArcSDE. Valid
entries for an ArcSDE table parameter include the parameters to the right of the SQL
CREATE TABLE statement's columns list.

For example, a business table created with the following DB2 CREATE TABLE statement:

CREATE TABLE roads (road_id integer, name varchar2(32), surface_code integer)
in SDEDB2 index in SDEINDEX long in SDELOBS

would be entered into a DBTUNE file B STORAGE table parameter with the following
configuration string.
B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"

Index parameters define the storage configuration of a DB2 index. The index parameter is
appended to a DB2 CREATE INDEX statement during its creation by ArcSDE. Valid entries
in an ArcSDE index parameter include all parameters to the right of the SQL CREATE
INDEX statement's column list.

Chapter 3 Configuring DBTUNE storage parameters 19

The business table storage parameter

A business table is any DB2 table created by an ArcSDE client, the sdetable administration
command, or the ArcSDE C application programming interface (API) SE_table create
function.

Use the DBTUNE table's B_STORAGE storage parameter to define the storage
configuration of a business table.
The business table index storage parameters

Three index storage parameters exist to support the creation of business table indexes.

The B INDEX USER storage parameter holds the storage configuration for user-defined
indexes created with the C API function SE table create index and the create index
operation of the sdetable command.

The B INDEX ROWID storage parameter holds the storage configuration of the index
ArcSDE creates on a register table's object ID column, commonly referred to as the ROWID.

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also be
registered with the alter _reg operation of the sdetable command or with ArcCatalog. The
SDE.TABLE REGISTRY system table maintains a list of the currently registered tables.

Multiversioned table storage parameters

Registering a business table as multiversioned allows multiple users to maintain and edit their
copy of the object. At appropriate intervals each user merges the changes they have made to
their copy with the changes made by other users and reconciles any conflicts that arise when
the same rows are modified.

ArcSDE creates two tables—the adds table and the deletes table—for each table that is
registered as multiversioned.

The A_STORAGE storage parameter maintains the storage configuration of the adds table.
Four other storage parameters hold the storage configuration of the indexes of the adds table.
The adds table is named A<n>, where <n> is the registration ID listed in the

SDE.TABLE REGISTRY system table. For instance, if the business table ROADS is listed
with a registration ID of 10, ArcSDE creates the adds table as A10.

The A INDEX ROWID storage parameter holds the storage configuration of the index that
ArcSDE creates on the multiversion object ID column, commonly referred to as the ROWID.
The adds table ROWID index is named A<n> ROWID IX1, where <n> is the business
table's registration ID, which the adds table is associated with.

The A INDEX STATEID storage parameter holds the storage configuration of the index
ArcSDE creates on the adds table's SDE_ STATE ID column. The SDE_STATE ID column
index is called A<n> STATE IX2, where <n> is the business table's registration ID, which
the adds table is associated with.

20

ArcSDE Configuration and Tuning Guide for DB2

The A INDEX USER storage parameter holds the storage configuration of user-defined
indexes that ArcSDE creates on the adds table. The user-defined indexes on the business
tables are duplicated on the adds table.

The D_STORAGE storage parameter holds the storage configuration of the deletes table.
Two other storage parameters hold the storage configuration of the indexes that ArcSDE
creates on the deletes table. The deletes table is named D<n>, where <n> is the registration
ID listed in the SDE.TABLE REGISTRY system table. For instance, if the business table
ROADS is listed with a registration ID of 10, ArcSDE creates the deletes table as D10.

The D INDEX STATE ROWID storage parameter holds the storage configuration of the
D<n> IDXI1 index that ArcSDE creates on the deletes table's SDE_STATE ID and
SDE DELETES ROW_ID columns.

The D_INDEX DELETED AT storage parameter holds the storage configuration of the
D<n> IDX?2 index that ArcSDE creates on the deletes table's SDE_ DELETED AT column.

Note: If a keyword is not specified when the registration of a business table is converted from
single-version to multiversion, the adds and deletes tables and their indexes are created with
the storage parameters of the configuration keyword that the business table was created with.

Raster table storage parameters

A raster column added to a business table is actually a foreign key reference to raster data
stored in a schema consisting of four tables and supporting indexes.

The RAS_STORAGE storage parameter holds the DB2 CREATE TABLE storage
configuration of the RAS table.

The BND STORAGE storage parameter holds the DB2 CREATE TABLE storage
configuration of the BND table index.

The AUX STORAGE storage parameter holds the DB2 CREATE TABLE configuration of
the AUX table.

The BLK_STORAGE storage parameter holds the DB2 CREATE TABLE storage
configuration of the BLK table.

#H#RASTER

AUX_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

BLK_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE> LONG IN <TABLESPACE>"
BND_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

RAS_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"

UI_TEXT ™

END

Chapter 3 Configuring DBTUNE storage parameters 21

Network class composite keywords

The composite keyword is a unique type of keyword designed to accommodate the tables of
the ArcGIS network class. The network table's size variation requires a keyword that
provides configuration storage parameters for both large and small tables. Typically the
network descriptions table is very large in comparison with the others.

To accommodate the vast difference in the size of the network tables, the network composite
keyword is subdivided into elements. A network composite keyword has three elements: the
parent element defines the general characteristic of the keyword and the junctions feature
class, the description element defines the configuration of the DESCRIPTIONS table and its
indexes, and the network element defines the configuration of the remaining network tables
and their indexes.

The parent element does not have a suffix, and its keyword looks like any other keyword.
The description element is demarcated by the addition of the ::DESC suffix to the parent
element's keyword, and the network element is demarcated by addition of the :NETWORK
suffix to the parent element's keyword.

For example, if the parent element keyword is ELECTRIC, the network composite keyword
would appear in a DBTUNE file as follows:

#H#HELECTRIC
COMMENT This keyword is dedicated to the electrical geometric network class

UI_NETWORK_TEXT "The electrical geometrical network class keyword"

B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
B_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"
A_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

A_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID

D_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D_INDEX_DELETED_AT ™

D_INDEX_STATE_ROWID ™

END

#H#ELECTRIC::DESC
B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
B_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

22 ArcSDE Configuration and Tuning Guide for DB2

A_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"
A_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID "

D_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D_INDEX_DELETED_AT ™

D_INDEX_STATE_ROWID ™

END

#H#ELECTRIC:NETWORK

B_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
B_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

B_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"
A_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
A_INDEX_ROWID "PCTFREE 15 DISALLOW REVERSE SCANS"

A_INDEX_USER "PCTFREE 10 MINPCTUSED 25 DISALLOW REVERSE SCANS"

A_INDEX_STATEID

D_STORAGE "IN SDEDB2 INDEX IN SDEINDEX LONG IN SDELOBS"
D_INDEX_DELETED_AT ™

D_INDEX_STATE_ROWID ™

END

Following the import of the DBTUNE file, these records would be inserted into the
DBTUNE table.

DB2> select keyword, parameter_name from DBTUNE;

KEYWORD PARAMETER_NAME
ELECTRIC COMMENT

ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE

ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_SHAPE
ELECTRIC B_INDEX_USER
ELECTRIC A_STORAGE

ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_SHAPE
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE

ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID

ELECTRIC::DESC B_STORAGE

Chapter 3 Configuring DBTUNE storage parameters 23

ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::DESC
ELECTRIC::NETWORK
ELECTRIC::NETWORK
ELECTRIC::NETWORK
ELECTRIC::NETWORK
ELECTRIC:NETWORK
ELECTRIC::NETWORK
ELECTRIC::NETWORK
ELECTRIC::NETWORK
ELECTRIC:NETWORK
ELECTRIC::NETWORK

B_INDEX_ROWID
B_INDEX_USER
A_STORAGE
A_INDEX_ROWID
A_INDEX_STATEID
A_INDEX_USER
D_STORAGE
D_INDEX_DELETE_AT
D_INDEX_STATE_ROWID
B_STORAGE
B_INDEX_ROWID
B_INDEX_USER
A_STORAGE
A_INDEX_ROWID
A_INDEX_STATEID
A_INDEX_USER
D_STORAGE
D_INDEX_DELETE_AT
D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC configuration keyword
storage parameters, the network descriptions table is created with the storage parameters of
the ELECTRIC::DESC keyword, and the remaining smaller network tables are created with
the ELECTRIC::NETWORK keyword.

The NETWORK_DEFAULTS keyword

The NETWORK DEFAULTS keyword contains the default storage parameters for the
ArcGIS network class. If the user does not select a network class composite keyword from
the ArcCatalog interface, the ArcGIS network is created with the storage parameters within
the NETWORK DEFAULTS keyword.

Whenever a network class composite keyword is selected, its storage parameters are used to
create the feature class, table, and indexes of the network class. If a network composite
keyword is missing any storage parameters, ArcGIS substitutes the storage parameters of the
DEFAULTS keyword rather than the NETWORK DEFAULTS keyword. The storage
parameters of the NETWORK DEFAULTS keyword are used when a network composite
keyword has not been specified.

IfaNETWORK DEFAULTS keyword is not present in a DBTUNE file imported into the
DBTUNE table, the following NETWORK DEFAULTS keyword is created.

##NETWORK_DEFAULTS

A_INDEX_ROWID

A_INDEX_STATEID

A_INDEX_USER

#A_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
B_INDEX_ROWID

B_INDEX_USER

#B_STORAGE "IN <TABLESPACE> INDEX IN <TABLESPACE>"
COMMENT "The base system initialization parameters for
NETWORK_DEFAULTS"

D_INDEX_DELETED_AT

D_INDEX_STATE_ROWID ™

#D_STORAGE
UI_NETWORK_TEXT
END

"IN <TABLESPACE> INDEX IN <TABLESPACE>"
"The network default configuration”

24

ArcSDE Configuration and Tuning Guide for DB2

##NETWORK_DEFAULTS::DESC

A_INDEX_ROWID
A_INDEX_STATEID
A_INDEX_USER
#A_STORAGE
B_INDEX_ROWID
B_INDEX_USER
#B_STORAGE
D_INDEX_DELETED_AT
D_INDEX_STATE_ROWID
#D_STORAGE

END

"IN <TABLESPACE> INDEX IN <TABLESPACE>"
"IN <TABLESPACE> INDEX IN <TABLESPACE>"

"IN <TABLESPACE> INDEX IN <TABLESPACE>"

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID
A_INDEX_STATEID
A_INDEX_USER
#A_STORAGE
B_INDEX_ROWID
B_INDEX_USER
#B_STORAGE
D_INDEX_DELETED_AT
D_INDEX_STATE_ROWID
#D_STORAGE

END

DB2 default parameters

By default, DB2 stores tables and indexes in the user’s default tablespace using the
tablespace’s default storage parameters. This tablespace is called USERSPACEI in DB2.

Editing the DBTUNE table

To edit the storage parameters, the sdedbtune administration command allows you to export
the DBTUNE table to a file located in the SSDEHOME/etc directory on UNIX® servers and
in the %SDEHOME%\etc folder on Windows servers. It is an ArcSDE configuration file that
contains DB2 table and index creation parameters. These parameters allow the ArcSDE
service to communicate to the DB2 server such things as where a tablespace, table, or index
will be created, as well as other parameters that can be set on either the CREATE TABLE or
CREATE INDEX statement. The file can be edited with a UNIX file-based editor such as
"vi" or a Windows NT" file-based editor such as "notepad". After updating the file, you can
repopulate the DBTUNE table using the import operation of the sdedbtune command.

"IN <TABLESPACE> INDEX IN <TABLESPACE>"

"IN <TABLESPACE> INDEX IN <TABLESPACE>"

"IN <TABLESPACE> INDEX IN <TABLESPACE>"

In the following example the DBTUNE table is exported to the dbtune.out file.

$ sdedbtune -o export -f dbtune.out -u sde -p fredericton

ArcSDE 8.3 Wed Oct 4 22:32:44 PDT 2000

Attribute Administration Utility

Successfully exported to file SDEHOME\etc\dbtune.out

$ vi dbtune.out

Chapter 3 Configuring DBTUNE storage parameters 25

$ sdedbtune -o import -f dbtune.out -u sde -p fredericton -N

ArcSDE 8.3 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file in the etc directory of the ArcSDE
home directory. You cannot relocate the file to another directory with a qualifying pathname.
By not allowing the relocation of the file, the sdedbtune command ensures they remain under
the ownership of the ArcSDE administrator.

26 ArcSDE Configuration and Tuning Guide for DB2

The complete list of ArcSDE 8.3 storage parameters

Parameter Name Value | Parameter Description Default Value

STATES LINEAGES TABLE <string>| State lineages table B STORAGE

STATES TABLE <string>| States table B_STORAGE

STATES INDEX <string>| States indexes B INDEX USER

MVTABLES MODIFIED TABLE <string>| Mvtables_modified table B _STORAGE

MVTABLES MODIFIED INDEX <string™>| Mvtables modified index B INDEX USER

VERSIONS TABLE <string>| Versions table B_STORAGE

VERSIONS INDEX <string>| Version index B INDEX USER

B _STORAGE <string>| Business table DB2 defaults

B _INDEX ROWID <string>| Business table object ID DB2 defaults
column index

B INDEX USER <string>| Business table user index(s) DB?2 defaults

A _STORAGE <string>| Adds table DB2 defaults

A _INDEX ROWID <string>| Adds table object ID column DB2 defaults
index

A INDEX STATEID <string>| Adds table sde state id column | DB2 defaults
index

A INDEX USER <string™>| Adds table index DB2 defaults

D STORAGE <string>| Deletes table DB32 defaults

D INDEX STATE ROWID <string>| Deletes table sde states idand | DB2 defaults
sde_deletes row_id column
index

D INDEX DELETED AT <string>| Deletes table sde_deleted at DB2 defaults
column index

LOB_SIZE <string>| Size of BLOB column 1 MB

Chapter 3 Configuring DBTUNE storage parameters

27

Parameter Name Value | Parameter Description Default Value

LOB_OPTION <string>| Storage configuration properties | DB2 defaults
of the BLOB column

LF_STORAGE <string>| Sde_logfiles table DB2 defaults

LF INDEXES <string>| Sde_logfile table column DB2 defaults
indexes

LD STORAGE <string>| Sde logfile data table DB?2 defaults

LD INDEX DATA ID <string>| Sde_logfile data table DB2 defaults

LD INDEX ROWID <string>| Sde logfile data table DB2 defaults
sde_row_id column index

RAS STORAGE <string>| Raster RAS table DB?2 defaults

BND_STORAGE <string>| Raster BND table DB2 defaults

AUX STORAGE <string>| Raster AUX table DB2 defaults

BLK STORAGE <string>| Raster BLK table DB2 defaults

UL TEXT <string>| User interface name of the DB2 defaults
configuration keyword

Ul NETWORK TEXT <string>| User interface name of the DB2 defaults
network configuration keyword

COMMENT <string>| Comments none

29

CHAPTER 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables. Tables

with spatial columns are called standalone feature classes. Attribute-only

(nonspatial) tables are also an important part of any database. This chapter

will describe the table and feature class creation and loading process.

Data creation

There are numerous applications that can create and load data within an ArcSDE DB2
database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

sdelayer—Creates and manages feature classes.

sdetable—Creates and manages tables.

sdeimport—Takes an existing sdeexport file and loads the data into a feature class.
shp2sde—Loads an ESRI shapefile into a feature class.

cov2sde—Loads a coverage, Map LIBRARIAN layer, or ArcStorm™ layer into a
feature class.

tbl2sde—Loads an attribute-only dBASE® or INFO™ file into a table.

sdegroup—A specialty feature class creation command that combines the features of
an existing feature class into single multipart features and stores them in a new
feature class for background display. The generated feature class is used for rapid
display of a large amount of geometry data. The attribute information is not retained,
and spatial searches cannot be performed on these feature classes.

These are all run from the operating system prompt. Command references for these tools are in the
ArcSDE developer help.

30

ArcSDE Configuration and Tuning Guide for DB2

Other applications include:

2. ArcGIS Desktop—Use ArcCatalog or ArcToolbox to manage and populate your
database.

3. ArcInfo Workstation—Use the Defined Layer interface to create and populate the
database.

4. ArcView® GIS 3.2—Use the Database Access extension.

5. MapObjects"—Custom Component Object Model (COM) applications can be built to
create and populate databases.

6. ArcSDE CAD Client extension—For AutoCAD® and MicroStation® users.
7. Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide some
ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use graphical
user interface like the one found in ArcGIS Desktop. For details on how to use ArcCatalog or
ArcToolbox (another desktop data loading tool), please refer to the ArcGIS books:

o Using ArcCatalog
o Using ArcToolbox

® Building a Geodatabase

Creating and populating a feature class

The general process involved with creating and loading a feature class is to:
1. Create the business table.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the
database.

3. Switch the feature class to load only io mode (optional step to improve bulk data
loading performance. It is OK to leave feature class in normal io mode to load data.).

4. Insert the records (load data).

5. Switch the feature class to normal io mode (builds the indexes).

6. Version the data (optional).

7. Grant privileges on the data (optional).

In the following sections, this process is discussed in more detail and illustrated with some

examples of ArcSDE administration commands usage and ArcInfo data loading utilities
through the ArcCatalog and ArcToolbox interfaces.

Chapter 4 Managing tables, feature classes, and raster columns 31

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from scratch
(requiring considerably more effort), or you can create a feature class from existing data such
as a coverage or ESRI shapefile. Both methods are reviewed below with the “from scratch”
method being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command allows you to include a dbtune
configuration keyword containing the storage parameters of the table.

Although the table may contain up to 1012 columns, ArcSDE requires that only one of those
columns be defined as a spatial column.

In this example, the sdetable command is used to create the ‘roads’ business table.

sdetable -o create -t roads -d 'road_id integer, name string(32), shape integer' -k roads -u beetle -p
bug

The table is created using the dbtune configuration keyword (-k) ‘roads’ by the user ‘beetle’.

The same table could be created with a SQL CREATE TABLE statement using the DB2 SQL
interface.

create table roads

(road_id integer,
name varchar(32),
shape integer);

At this point you have created a table in the database. ArcSDE does not yet recognize it as a
feature class. The next step is to record the spatial column in the ArcSDE LAYERS and
GEOMETRY_ COLUMNS system tables and thus add a new feature class to the database.

Adding a feature class

After creating a business table, you must add an entry for the spatial column in the ArcSDE
LAYERS system tables before the ArcSDE server can reference it. Use the sdelayer
command with the “-o0 add” operation to add the new feature class.

In the following example, the roads feature class is added to the ArcSDE database. Note that
to add the feature class, the roads table name and the spatial column are combined to form a
unique feature class reference. To understand the purpose of the —e, —g, and —x options, refer
to the sdelayer command reference in the ArcSDE Developer Help system.

sdelayer -o add -l roads,shape -e I+ -g 256,0,0 -x 0,0,100 -u beetle -p bug -k roads

The feature class tables and indexes are stored according to the storage parameters of the
roads configuration keywords in the DBTUNE table. Upon successful completion of the
previous sdetable command—to create a table—and the sdelayer command—to record the
feature class in the ArcSDE system tables—you have an empty feature class in normal_io
mode.

32

ArcSDE Configuration and Tuning Guide for DB2

Switching to load-only mode

Switching the feature class to load-only mode drops the spatial index and makes the feature
class unavailable to ArcSDE clients. Bulk loading data into the feature class in this state is
much faster due to the absence of index maintenance. Use the sdelayer command to switch
the feature class to load-only mode by specifying the “-o load only io” operation.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode. However, the grid size can be altered with the -o alter operation. The alter operation
will apply an exclusive lock on the feature class, preventing all modifications by ArcInfo until
the operation is complete.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are several
ways to insert data into a feature class, but probably the easiest method is to convert an
existing shapefile or coverage or import a previously exported ArcSDE sdeexport file directly
into the feature class.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to “overwrite”
data that’s already there. Don't use the init operation on feature classes that already contain
data unless you want to remove the existing data. Here, the shapefile, ‘rdshp’, will be loaded
into the feature class, ‘roads’. Note that the name of the spatial column (‘shape’ in this case)
is included in the feature class (-1) option.

shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, we can also use the cov2sde command:

cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal I/O mode

After data has been loaded into the feature class, you must switch the feature class to

normal_io mode to re-create all indexes and make the feature class available to clients. For
example:

sdelayer -o normal_io -l roads,shape -u beetle -p bug

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process that
allows multiple representations of your data to exist without requiring duplication or copies of
the data. ArcMap requires data to be multiversioned to edit it. For further information on
versioning data, refer to the Building a Geodatabase book.

In this example, the feature class called ‘states’ will be registered as multiversioned using the
sdetable alter reg operation.

sdetable -0 alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Chapter 4 Managing tables, feature classes, and raster columns 33

Granting privileges on the data

Once you have the data loaded, it is often necessary for other users to have access to the data
for update, query, insert, or delete operations. Initially, only the user who has created the
business table has access to it. In order to make the data available to others, the owner of the
data must grant privileges to other users. The owner can use the sdelayer command to grant
privileges. Privileges can be granted to either another user or to a group.

In this example, a user called ‘beetle’ gives a user called ‘spider” SELECT privileges on a
feature class called ‘states’.

sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug
The full list of -A keywords are:

SELECT. The user may query the selected object(s) data.
DELETE. The user may delete the selected object(s) data.
UPDATE. The user may modify the selected object(s) data.
INSERT. The user may add new data to the selected object(s) data.

If you include the -I grant option, you also grant the recipient the privilege of granting other
users and groups the initial privilege.

Creating and loading feature classes from existing data

We have reviewed the “from scratch” method of creating a schema and then loading it. This
next section reviews how to create feature classes from existing data. This method is simpler
since the creation and load process is completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport, includes a
“-0 create” operation, which allows you to create a new feature class within the ArcSDE
database. The create operation does all of the following:

o Creates the business table using the input data as the template for the schema

e Adds the feature class to the ArcSDE system tables

e Puts the feature class into load-only mode

e Inserts data into the feature class

e When all the records are inserted, puts the feature class into normal_io mode

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatial column
definition is read directly from the shapefile. You can use the shpinfo command to display the
shapefile column definitions. In this example the -k option references the DBTUNE

34

ArcSDE Configuration and Tuning Guide for DB2

configuration keyword ROADS. The ROADS keyword contains storage parameters for
storing the tables and indexes of the roads feature class.

shp2sde -o create -f rdshp -l roads,shape -k ROADS -u beetle -p bug

cov2sde

The cov2sde command converts Arclnfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table. Use
the ArcInfo describe command to display the ArcInfo data source column definitions.

In this example, an ArcStorm library, ‘roadlib’, is converted into the feature class, ‘roads’.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100 -e I+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In this
example, the roadexp ArcSDE export file is converted into the feature class ‘roads’.

sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature class to other users.

Appending data to an existing feature class

A common requirement for data management is to be able to append data to existing feature
classes. The data loading commands described thus far have a -o append operation for
appending data. A feature class must exist prior to using the append operation. If the feature
class is multiversioned, it must be in an “open” state. It is also advisable to change the feature
class to load-only I/O mode and pause the spatial indexing operations before loading the data
to improve the data loading performance. The spatial indexes will be re-created when the
feature class is put back into normal I/O mode. Because the feature class has been defined, the
metadata exists and is not altered by the append operation.

In the shp2sde example below, a previously created ‘roads’ feature class appends features
from a shapefile, ‘rdshp2’. All existing features, loaded from the ‘rdshp’ shapefile, remain
intact, and ArcSDE updates the feature class with the new features from the rdshp2 shapefile.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -0 append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation updates
the table and index statistics required by the DB2 optimizer. Without the statistics the
optimizer may not be able to select the best execution plan when you query the table. For
more information on updating statistics, see Chapter 2, ‘Essential configuring and tuning’.

Chapter 4 Managing tables, feature classes, and raster columns 35

Creating and populating raster columns

Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To create a
raster column, you will first need to convert the image file into a format acceptable to
ArcSDE. Then after the image has been converted to the ESRI raster file format, you can
convert it into a raster column.

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To understand how ArcSDE stores rasters in DB2, refer to Appendix A, ‘Storing raster data’.

Creating views

There are times when a DBMS view is required in your database schema. ArcSDE provides
the sdetable create_view operation to accommodate this need. The view creation is much like
any other DB2 view creation. If you want to create a view using a layer and you want the
resulting view to appear as a feature class to client applications, include the feature class's
spatial column in the view definition. As with the other ArcSDE commands, see ArcSDE
Developer Help for more information.

Exporting data

As with importing data, there are client applications that export data from ArcSDE as well.
With ArcSDE, the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between DB2
instances and to other supported DBMSs

sde2shp—creates an ESRI shapefile from an ArcSDE feature class
sde2cov—creates a coverage from an ArcSDE feature class

sde2tbl—creates a dBASE or INFO file from a DBMS table

Schema modification

There will be occasions when it is necessary to modify the schema of some tables. You may
need to add columns from a table. The ArcSDE command to do this is sdetable with the —o
alter option. ArcCatalog offers an easy-to-use tool for this and other schema operations such
as modifying the spatial index (grids) and adding and dropping column indexes.

36 ArcSDE Configuration and Tuning Guide for DB2

Using the ArcGIS Desktop ArcCatalog and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use ArcCatalog
to create feature datasets and feature classes within those feature datasets to use specific
ArcGIS Desktop functionality. For that reason, we provide a glimpse of how to use
ArcToolbox and ArcCatalog to load data. Please refer to the ArcGIS Desktop documentation
on ArcCatalog, ArcToolbox, and the geodatabase for a full discussion of these tools.

Loading data

You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm layers
into geodatabase feature classes with the ArcToolbox and ArcCatalog applications.
ArcToolbox provides a number of tools that enable you to convert data from one format to
another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde, cov2sde, and
sdeimport, accept configuration keywords.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase.

Chapter 4 Managing tables, feature classes, and raster columns 37

The shapefile CASNBRST.shp is converted to a feature class vtest. CASNBRST using ArcToolbox.

* Shapefile to Geodatabase [7]

Lhput shapefile: ok

|EI:\keithr\testing'\Cﬁ.SNEIFEST.ShD = Cancel
Output Geodatabaze: Help

|E: W IMM T4 ProfileshkeithtApplication DatatESRIWacCat | (2

Select an existing feature datazet or enter a new one:

| =l

Enter the name of the new feature class:
|vtest CASMERST

Output zettings

Coordinate Sypstem: GCS Morth American 1927
Grid Size: 3.1434933333343E-03
Iter Mames: Same items as input

Configuration Kemuord:

Change Settings... |

\4

Output Settings
Spatial Ref] Grd Size] Item M ames

Enter the configuration keyword

" Default

to |l=ze configuration kewwaord

Thiz option allows vou to specify a configuration keyword which
references the databaze storage parameters for the news feature
clazs.

hampton_subdivizion

Ok Cancel

38 ArcSDE Configuration and Tuning Guide for DB2

Versioning your data

ArcCatalog also provides a means for registering data as multiversioned. Simply right-click
the feature class to be registered as multiversioned and select the Register As Versioned
context menu item.

¥ ArcCatalog - Database Connections\world to zipzap.sde\WORLD.STUS_STATES M=l E3
File Edit ¥iew Go Tools Help ‘

SET T i @as/e aanele s
Location IDaIabase Connections\world to zipzap sdet\WORLD STUS_STATE ~| |

Styleshest |ESRI 2| 2l 2= §|
< x

-5 WORLD.STDRAINAGE =l

WORLD. STORAINAGE_GEOM
WORLD STGEOGRID

- WORLD.STGEOGRID_GEOM
WORLDL.STLAKES

- E WORLD.STLAKES_GEOM

] WORLD.STLATLONG
WORLD.STLATLONG_GEOM
WORLD STRIVERS
WORLD STRIVERS_GEOM -

- WORLD.STUS_CITIES -
WORLD.STUS_CITIES_GEOM
WORLD.STUS_COUNTIES e~
WORLD.STUS_COUNTIES_GECM
WORLD.STUS_STATF=

] WORLD STUS_5T4 8 Capy Cul+C
WORLD.STWORLD % Delete

-E WORLD.STWORLD Rename
[WORLD US_CITIES
WORLD US_COUN

B WORLD.US_STATE Registerwith Geodatahase
WORLDMWORLD30 "

Bl world warld_binan
world.world_binany2 | SXPOR 4
worldworld_spatiall [aad Data.

- WORLDWORLD_S
world world_spatial2

-E WORLDMWORLD_T ' Eroperties...

WORLD.ZLINE :|

Contents Preview | hetadata

Create Layer.

Fiivilages

[WORLD.ZPOINT

Presigw: Geography hd

Register As Versioned v

A feature class is registered as multiversioned from within ArcCatalog.

Granting privileges

Using ArcCatalog, right-click on the data object class and click on the Privileges context
menu. From the Privileges context menu assign privileges specifying the username and the
privilege you wish to grant to or revoke from a particular user.

Chapter 4 Managing tables, feature classes, and raster columns

39

' Privileges

YWhich user do wou want provide or rewoke access to the selected object(s).

—Frivileges

the options unchecked.

Specify what privileges vou want this user to hawe on the selected
ohkject(s). lfyou do notwant this userto hawe any privileges, then leawve all

¥ SELECT. The user may query the selected ohject(s) data;

[T UPDATE. The user may modify the selected object(s) data.

[T INSERT. The user may add new data to the selected ohject(s).

[T DELETE. The user may delete data fram the selected object(s).

Ok

Cancel

Apply

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset, feature
class, or table, to assign privileges to other users or roles.

Creating a raster column with ArcCatalog

Using ArcCatalog, right-click on the database connection, point to Import, and click on Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want to

change the coordinate reference system, tile size, pyramids option, or configuration keyword.
Click OK to import the raster file into the DB2 database.

40 ArcSDE Configuration and Tuning Guide for DB2

* Haster to Geodatabase EHE
ok |

WAapiceqirlsasrasterdatatShithwarld ba El Cancel |
Output SDE Geodatabasze: Help |

IC: SwWAMM T ProfilesimarkhtApplication DatasESRIWAcCa El

Input B aster:

Select an existing raster or create a new ane:

Iwulld.warld j

— Output zettingz

Coordinate System:; Unknown

Tile Size: 128 %128
Pyramidz Option; Build pyramids
Canfiguration Keyword: world_data

Change Settings...

Batch -

4

APPENDIX A

Storing raster data

A raster is a rectangular array of equally spaced cells that, taken as a whole,
represent thematic, spectral, or picture data. Raster data can represent
everything from qualities of land surface such as elevation or vegetation to

satellite images, scanned maps, and photographs.

You are probably familiar with raster formats, such as tagged image file
format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics
Interchange Format (GIF), that your Internet browser renders. These rasters
are composed of one or more bands. Each band is segmented into a grid of
square pixels. Each pixel is assigned a value that reflects the information it

represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products, review
Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

A raster column is added to a business table, and each cell of the raster column contains a
reference to a raster stored in a separate raster table. Therefore, each row of a business table
references an entire raster.

ArcSDE stores the raster bands in the raster band table. ArcSDE joins the raster band table to
the raster table on the raster id column. The raster band table's raster id column is a foreign
key reference to the raster table's raster_id primary key.

ArcSDE automatically stores any existing image metadata, such as image statistics, color
maps, or bitmasks, in the raster auxiliary table. The rasterband_id column of the raster
auxiliary table is a foreign key reference to the primary key of the raster band table. ArcSDE
joins the two tables on this primary/foreign key reference when accessing a raster band's
metadata.

42 ArcSDE Configuration and Tuning Guide for DB2

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Cell values in single-band rasters can be drawn in these three basic ways.

Monochrome Grayscale Display colormap
image image image Colormap

68 {124 0 .EG 0 red green blue
l2aa] - N 251 JgRY 23e| [1]e>{ 255 255] ©
76 124 132 66 Yl 64 | 0 | 128
124 16 113. 32 <|le| 255 | 32 | 32
126141 56 n <« 128 | 255 | 128
« PR e > 0 [0 |25
0

In a monochrome image, each cell In a grayscale image, each cellhasa One way to represent colors on an

has a value of 0 or 1. They are often value from 0 to 255. They are often image is with a colormap. A set of

used for scanning maps with simple used for black-and-white aerial values is arbritrarily coded to match a

linework, such as parcel maps. photographs. defined set of red-green-blue values.

Raster datasets have one or many
bands. In multiband rasters, a band
represents a segment of the
electromagnetic spectrum that has
been collected by a sensor.

band 1
S e A e A e

- Electromagnetic spectrum

band Red-green-blue Bands often represent a portion of the electromagnetic
composite spectrum, including ranges not visible to the eye—the

infrared or ultraviolet sections of the spectrum.

Green
band
Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly

displayed on computer displays, which employ a
red-green-blue color rendition model.

Blue
band

Attribute values 255

range from 0 to 255 |
in each band 0

The raster blocks table stores the pixels of each raster band. ArcSDE tiles the pixels into
blocks according to a user-defined dimension. ArcSDE does not have a default dimension;
however, applications that store raster data in ArcSDE do. ArcToolbox and ArcCatalog, for
example, use default raster block dimensions of 128-by-128 pixels per block. The
dimensions of the raster block along with the compression method, if one is specified,
determine the storage size of each raster block.

The raster blocks table contains the rasterband_id column, which is a foreign key reference to
the raster band table's rasterband_id primary key. ArcSDE joins these tables together on the
primary/foreign key reference when accessing the blocks of the raster band.

Appendix A Storing raster data 43

ArcSDE populates the raster blocks table according to a declining resolution pyramid. The
height of the pyramid is determined by the number of levels specified by the application.
ArcToolbox and ArcCatalog calculate the pyramid for you, so there is no need to define the
number of levels.

The pyramid begins at the base, or level 0, which contains the original pixels of the image.
The pyramid proceeds toward the apex by coalescing four pixels from the previous level into
a single pixel at the current level. This process continues until less than four pixels remain or
until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels. The
additional levels of the pyramid increase the number of raster block table rows by one third.
However, since it is possible for the user to specify the number of levels, the true apex of the
pyramid may not be obtained, limiting the number of records added to the raster blocks table.

Figure A.1 When you build a pyramid, more rasters are created by progressively downsampling the
previous level by a factor of two until the apex is reached. As the application zooms out and the raster cells
grow smaller than the resolution threshold, ArcSDE selects a higher level of the pyramid. The purpose of
the pyramid is to optimize display performance.

The pyramid allows ArcSDE to provide the application with a constant resolution of pixel
data regardless of the rendering window's scale. Data of a large raster transfers quicker to the
client when a pyramid exists since ArcSDE can transfer fewer cells of a reduced resolution.

Raster schema

When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so long as
it conforms to DB2's column naming convention. ArcSDE restricts one raster column per
business table.

The raster column is a foreign key reference to the raster id column of the raster table created
during the addition of the raster column. Also joined to the raster table's raster id primary
key, the raster band table stores the bands of the image. The raster auxiliary table, joined one-
to-one to the raster band table by rasterband id, stores the metadata of each raster band. The
rasterband_id also joins the raster band table to the raster blocks table in a many-to-one
relationship. The raster blocks table rows store blocks of pixels, determined by the
dimensions of the block.

44 ArcSDE Configuration and Tuning Guide for DB2

raster_columns

rastercolumn_id | description | database_name | owner table_name raster_column

1 bob | building_footprints house

building_footprints

building_id | footprint | house
10 55

1
sde_ras_1 (raster table)

raster_id | description

55

sde_bnd_1 {raster band table)

rasterband_id | sequence_nbr | raster_id | name

39 55
I |
sde_blk_1 {raster block table) sde_awx_1 (raster auxiliary table)
rasterband_id | rrd_factor | row_nbr | col_nbr | block_data rasterband_id | type | ohject
39 89

Figure A.2 When ArcSDE adds a raster column to a table, it records that column in the sde user's
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the raster,
raster band, raster auxiliary, and raster blocks table.

The sections that follow describe the schema of the tables associated with the storage of
raster data. Refer to Figure A.2 for an illustration of these tables and the manner in which
they are associated with one another.

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER COLUMNS system table maintained in the sde user's schema. ArcSDE also
creates four tables to store the raster images and metadata associated with each one.

NAME DATA TYPE NULL?
rastercolumn_id INTEGER NOT NULL
description VARCHAR(65) NULL

Appendix A Storing raster data 45

database_name VARCHAR(32) NULL
owner VARCHAR(32) NOT NULL
table_name VARCHAR(128) NOT NULL
raster_column VARCHAR(128) NOT NULL
cdate INTEGER NOT NULL
config_keyword VARCHAR(32) NULL
minimum_id INTEGER NULL
base_rastercolumn_id INTEGER NOT NULL
rastercolumn_mask INTEGER NOT NULL
srid INTEGER NULL

Raster columns table

rastercolumn_id (SE_INTEGER TYPE)—The table's primary key.

description (SE_STRING_TYPE)—The description of the raster table.

database name (SE_STRING TYPE)—The DB2 database name.

owner (SE_STRING_TYPE)—The schema of the raster column's business table.
table name (SE_STRING TYPE)—The business table name.

raster_column (SE_STRING_TYPE)—The raster column name.

cdate (SE_INTEGER TYPE)—The date the raster column was added to the business
table.

config_keyword (SE_STRING TYPE)—The DBTUNE configuration keyword whose
storage parameters determine how the tables and indexes of the raster are stored in the
DB2 database. For more information on DBTUNE configuration keywords and their
storage parameters, review Chapter 3, ‘Configuring DBTUNE storage parameters'.

minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster, it
establishes the value of the raster table's raster id column.

base rastercolumn_id (SE_INTEGER TYPE)—If a view of the business table is
created that includes the raster column, an entry is added to the RASTER COLUMNS
table. The raster column entry of the view will have its own rastercolumn_id. The

base rastercolumn_id will be the rastercolumn_id of the business table used to create the
view. This base rastercolumn_id maintains referential integrity to the business table. It
ensures that actions performed on the business table raster column are reflected in the
view. For example, if the business table’s raster column is dropped, it will also be
dropped from the view (essentially removing the view's raster column entry from the
RASTER COLUMNS table).

rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used, maintained for future
use.

srid (SE_INTEGER TYPE)—The spatial reference ID (SRID) is a foreign key
reference to the DB2GSE.GSE_SPATIAL REF table. For images that can be

46 ArcSDE Configuration and Tuning Guide for DB2

georeferenced, the SRID references the coordinate reference system the image was
created under.

Business table

In the example that follows, the fictitious BUILD FOOTPRINTS business table contains the
raster column house image. This is a foreign key reference to the raster table created in the
users schema. In this case the raster table contains a record for each raster of a house. It
should be noted that images of houses cannot be georeferenced. Therefore, the SRID column
of the RASTER COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

building_id INTEGER NOT NULL
building_footprint INTEGER NOT NULL
house_picture INTEGER NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column
e building id (SE_ INTEGER TYPE)—the table's primary key

e building footprints (SE INTEGER TYPE)—a spatial column and foreign key
reference to a feature table containing the building footprints

e house image (SE_ INTEGER TYPE)—a raster column and foreign key reference to a
raster table containing the images of the houses located on each building footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS <raster column_id> in the DB2 database, stores a
record for each image stored in a raster column. The raster column_id column is assigned by
ArcSDE whenever a raster column is created in the database. A record for each raster column
in the database is stored in the ArcSDE RASTER COLUMNS system table maintained in
the sde user's schema.

NAME DATA TYPE NULL?
raster_id INTEGER NOT NULL
raster_flags INTEGER NULL
description VARCHAR(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id>)

e raster id (SE_INTEGER TYPE)—the primary key of the raster table and unique
sequential identifier of each image stored in the raster table

o raster flags (SE INTEGER TYPE)—a bitmap set according to the characteristics of a
stored image

e description (SE_STRING TYPE)—a text description of the image (not implemented at
ArcSDE 8.1)

Appendix A Storing raster data 47

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of each
image stored in the raster table. The raster id column of the raster band table is a foreign key
reference to the raster table's raster_id primary key. The rasterband _id column is the raster
band table's primary key. Each raster band in the table is uniquely identified by the sequential
rasterband_id.

NAME DATA TYPE NULL?
rasterband_id INTEGER NOT NULL
sequence_nbr INTEGER NOT NULL
raster_id INTEGER NOT NULL
name VARCHAR(65) NULL
band_flags INTEGER NOT NULL
band_width INTEGER NOT NULL
band_height INTEGER NOT NULL
band_types INTEGER NOT NULL
block_width INTEGER NOT NULL
block_height INTEGER NOT NULL
block_origin_x DOUBLE NOT NULL
block_origin_y DOUBLE NOT NULL
eminx DOUBLE NOT NULL
eminy DOUBLE NOT NULL
emaxx DOUBLE NOT NULL
emaxy DOUBLE NOT NULL
cdate INTEGER NOT NULL
mdate INTEGER NOT NULL

Raster band table schema

e rasterband id (SE_INTEGER TYPE)—The primary key of the raster band table that
uniquely identifies each raster band.

e sequence nbr (SE_INTEGER TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key as a second way to uniquely identify the
raster band.

o raster_id (SE_INTEGER TYPE)—The foreign key reference to the raster table’s
primary key. Uniquely identifies the raster band when combined with the sequence nbr
as a composite key.

e name (SE STRING TYPE)—The name of the raster band.

e band flags (SE INTEGER TYPE)—A bitmap set according to the characteristics of
the raster band.

e band width (SE INTEGER TYPE)—The pixel width of the band.

e band height (SE INTEGER TYPE)—The pixel height of the band.

48

ArcSDE Configuration and Tuning Guide for DB2

e band types (SE_ INTEGER TYPE)—A bitmap band compression data.

e block width (SE INTEGER TYPE)—The pixel width of the band's tiles.
e block height (SE INTEGER TYPE)—The pixel height of the band's tiles.
e block origin x (SE DOUBLE TYPE)—The leftmost pixel.

e block origin y (SE_ DOUBLE TYPE)—The bottom-most pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold the
coordinates of the extent.

e eminx (SE_ DOUBLE TYPE)—the band's minimum x-coordinate.

e eminy (SE_ DOUBLE TYPE)—the band's minimum y-coordinate.

e emaxx (SE_ DOUBLE TYPE)—the band's maximum x-coordinate.
e emaxy (SE DOUBLE TYPE)—the band's maximum y-coordinate
e cdate (SE_INTEGER TYPE)—the creation date

e mdate (SE_INTEGER TYPE)—the last modification date

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK <rastercolumn_id>, the raster blocks table stores the actual pixel data
of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the raster
band data enables efficient storage and retrieval of the raster data.

The rasterband_id column of the raster block table is a foreign key reference to the raster
band table's primary key. A composite unique key is formed by combining the rasterband id,
rrd_factor, row_nbr, and col nbr columns.

NAME DATA TYPE NULL?

rasterband_id INTEGER NOT NULL
rrd_factor INTEGER NOT NULL
row_nbr INTEGER NOT NULL
col_nbr INTEGER NOT NULL
block_data BLOB NOT NULL

Raster block table schema

e rasterband id (SE_INTEGER TYPE)—The foreign key reference to the raster band
table’s primary key.

e 1rd factor (SE INTEGER TYPE)—The reduced resolution dataset factor determines
the position of the raster band block within the resolution pyramid. The resolution
pyramid begins at 0 for the highest resolution and increases until the raster band’s lowest
resolution level has been reached.

Appendix A Storing raster data 49

e row nbr (SE INTEGER TYPE)—The block's row number.
e col nbr (SE_INTEGER TYPE)—The block's column number.

e block data (SE_ BLOB_TYPE)—The block's tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE. AUX <rastercolumn_id>, stores optional
raster metadata such as the image color map, image statistics, and bitmasks used for image
overlay and mosaicking. The rasterband_id column is a foreign key reference to the primary
key of the raster band table.

NAME DATA TYPE NULL?

rasterband_id INTEGER NOT NULL
type INTEGER NOT NULL
object BLOB NOT NULL

Raster auxiliary table schema

e rasterband id (SE_INTEGER TYPE)—the foreign key reference to the raster band
table’s primary key

e type (SE_INTEGER TYPE)—a bitmap set according to the characteristics of the data
stored in the object column

e object (SE_BLOB_TYPE)—may contain the image color map, image statistics, etc.

50 ArcSDE Configuration and Tuning Guide for DB2

53

APPENDIX B

DB2 Spatial Extender
geometry types

ArcSDE for DB2 stores its spatial data in the DB2 Spatial Extender” data
types. Therefore, before ArcSDE can store spatial data in a DB2 database,
the Spatial Extender must be installed and the database must be spatially
enabled. This document describes the ArcSDE/DB2 Spatial Extender
interface and provides a brief overview of the spatial data types and functions
available after the database has been spatially enabled with the DB2 Spatial
Extender. For more information about the DB2 Spatial Extender, see the
IBM DB?2 Spatial Extender User’s Guide and Reference.

The DB2 Spatial Extender embeds a GIS into your DB2 database. The DB2 Spatial Extender
module implements the Open GIS Consortium, Inc. (OpenGIS®, or OGC) SQL 3
specification of user-defined types (UDTs), columns capable of storing spatial data such as
the location of a landmark, a street, or a parcel of land.

The GIS of the past was spatially centric and focused on gathering spatial data and attaching
nonspatial ‘attribute’ data to it. The Spatial Extender module integrates spatial and nonspatial
data, providing a seamless point of access through the DB2 Structured Query Language
(SQL) interface.

In addition to new data types, the DB2 Spatial Extender provides new capabilities such as
spatial joins. Application programmers typically join tables by comparing two or more
columns to determine whether their values are equal, not equal, greater than, and so on. The
DB2 Spatial Extender includes functions capable of comparing the values of spatial columns
to determine if they intersect, overlap, and so forth. These two-dimensional functions can join
tables based on their spatial relationship and answer questions such as “Is this school within
five miles of a hazardous waste site?”” Internally, the DB2 Spatial Extender ST Overlaps
function evaluates this question as, “Does this polygon (the building footprint of a school)
overlap this circular polygon (the five-mile radius of a hazardous waste site)?”” An application
programmer can join a table storing sensitive sites, such as schools, playgrounds, and
hospitals, to another table containing the locations of hazardous sites and return a list of
sensitive areas at risk.

54

ArcSDE Configuration and Tuning Guide for DB2

How the DB2 Spatial Extender works

Once the DB2 Spatial Extender is installed, you can create spatially enabled tables that
include spatial columns. Geographic features can be inserted into the spatial columns. The
DB?2 Spatial Extender converts spatial data into its storage format from one of three external
formats:

o Well-known text (WKT) representation
o Well-known binary (WKB) representation

o ESRI shape representation
ArcSDE uses the ESRI shape representation.

Accessing the spatially enabled tables through the ArcSDE server allows you to write
applications using the existing tools offered by the GIS software or create applications using
the Spatial Database Engine™ (SDE") C API. An experienced Open Database Connectivity
(ODBC) programmer can also make calls to the DB2 Spatial Extender spatial functions. The
majority of this document is devoted to discussing and applying these spatial functions.

After integrating spatial data into your database, you can include Spatial Extender functions
in your SQL statements, comparing the values of spatial columns, transforming the values
into other spatial data, and describing the properties of the data.

Appendix B DB2 Spatial Extender geometry types 55

Adding records to the DB2GSE.GSE_SPATIAL_REF table

The spatial reference system identifies the coordinate transformation matrix for each
geometry. Geometry is the term adopted by the Open GIS Consortium to refer to two-
dimensional spatial data. All spatial reference systems known to the database are stored in the
DB2GSE.GSE SPATIAL REF table.

NAME DATA TYPE NULL?

srid integer NOT NULL
sr_name varchar(64) NOT NULL
scid integer NOT NULL
falsex double NOT NULL
falsey double NOT NULL
Xyunits double NOT NULL
falsez double NOT NULL
zunits double NOT NULL
falsem double NOT NULL
munits double NOT NULL

DB2GSE.GSE_SPATIAL _REF table schema

The DB2GSE.GSE _SPATIAL REF table stores a record for each spatial reference in the
database.

The datatype for each column is defined below.

e srid (SE_INTEGER TYPE)—Contains the unique ID that identifies each SRID in the
database.

e sr name (SE_STRING TYPE)—The name of the spatial reference system.

e scid (SE_INTEGER TYPE)—The ID of the spatial reference system’s coordinate
reference system. This is a foreign key to the DB2GSE.COORD REF SYS table’s
primary key. The DB2GSE.COORD REF SYS table is populated when the database is
spatially enabled.

o falsex (SE_DOUBLE TYPE)—The x-value offset or the minimum allowable X-
ordinate value.

e falsey (SE DOUBLE TYPE)—The y-value offset or the minimum allowable Y-
ordinate value.

e xyunits (SE DOUBLE TYPE)—The XY coordinate system units or spatial reference
system’s XY coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

o falsez (SE_DOUBLE TYPE)—The z-value offset or the minimum allowable Z-
ordinate value.

56

ArcSDE Configuration and Tuning Guide for DB2

e zunits (SE DOUBLE TYPE)—The z-coordinate system units or spatial reference
system’s z-coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

e falsem (SE_ DOUBLE TYPE)—The m-value offset or the minimum allowable M-
ordinate value.

e munits (SE DOUBLE TYPE)—The m-coordinate system units or spatial reference
system’s m-coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

Internal functions use the parameters of a spatial reference system to translate and scale each
floating point coordinate of the geometry into 32-bit positive integers prior to storage. Upon
retrieval, the coordinates are restored to their external floating point format.

The floating point coordinates are converted to integers by subtracting the falsex and falsey
values, which translates to the false origin, scales by multiplying by the xyunits, adds a half
unit, and truncates the remainder.

The optional z-coordinates and measures are dealt with similarly, except that they are
translated with falsez and falsem and scaled with zunits and munits, respectively.

The spatial reference identifier, the primary key, contains a unique number for each spatial
reference system.

The spatial reference system is assigned to a geometry during its construction. The spatial
reference system must exist in the spatial reference table. All geometries in a column must
have the same spatial reference system.

Whenever ArcSDE creates a feature class it searches the DB2GSE.GSE _SPATIAL REF
table in an attempt to locate a matching spatial reference system. If one is found the SRID is
assigned to the feature class; otherwise, ArcSDE adds a new spatial reference system to the
DB2GSE.GSE SPATIAL REF table and assigns it to the feature class.

The ArcSDE administration tools shp2sde columns and cov2sde columns provide an option
for you to enter a predefined SRID when you use them to create a new feature class. In this
example, the roads coverage is converted to the roads feature class with a SRID of 10. The
coordinates of the coverage feature must fit within the extent of the spatial reference system.
Each feature found to lie outside the spatial reference system’s extent is rejected.

cov2sde -o create -l roads,feature -f roads -R 10 -g 100,0,0 -u world -p world

Creating feature classes in a DB2 database

A DB?2 spatial table can include one or more spatial columns, although ArcSDE restricts a
feature class to a single spatial column. Spatial columns are defined with one of the DB2
Spatial Extender’s UDTs. A spatial column can only accept data of the type required by the
spatial column. For example, an ST Polygon column rejects integers, characters, and even
other types of nonpolygon geometry.

Appendix B DB2 Spatial Extender geometry types 57

When ArcSDE creates a DB2 table with a spatial column, it also creates an SE ROW _ID
integer column. The SE ROW _ID column is required by ArcSDE client applications to keep
track of selection sets; more specifically it is used in ArcSDE log files.

ArcSDE adds a record to the DB2GSE.GEOMETRY COLUMNS table whenever it creates
a feature class in a DB2 database. Applications using the DB2 Spatial Extender are
responsible for inserting a record into the DB2GSE.GEOMETRY COLUMNS table each
time they add a spatial column to the database.

NAME DATA TYPE NULL?

layer_catalog varchar(30) NOT NULL
layer_schema varchar(30) NOT NULL
layer_table varchar(128) NOT NULL
layer_column varchar(128) NOT NULL
geometry_type integer NOT NULL
srid integer NOT NULL

Geometry_columns table schema

The DB2GSE.GEOMETRY_ COLUMNS table stores a record for each geometry column in
the database.

The datatype for each column is defined below.

e layer catalog (SE STRING TYPE)—The database in which the geometry column’s
table is stored.

e layer schema (SE_STRING TYPE)—The owner of the geometry column’s table.
e layer table (SE_STRING TYPE)—The geometry column’s table name.
e layer column (SE_STRING TYPE)—The name of the geometry column.

o geometry type (SE_INTEGER TYPE)—The geometry type code. ArcSDE inserts the
following values into this field:

Geometry Type Code Geometry Type
0 ST Geometry
1 ST Point
3 ST LineString
5 ST Polygon
7 ST MultiPoint
9 ST MultiLineString

11 ST MultiPolygon

58

ArcSDE Configuration and Tuning Guide for DB2

e srid (SE_ INTEGER TYPE)—The geometry column’s spatial reference system. This is
a foreign key to the SRID column of the DB2GSE.GSE_SPATIAL REEF table.

Creating a spatial index

Spatial columns contain two-dimensional geographic data, and applications querying those
columns require an index strategy that will quickly identify all geometries that lie within a
given extent. For this reason DB2 Spatial Extender provides support for the creation of a
three-level grid spatial index.

From the DB2 command line create a spatial index on a spatial column with the Spatial
Extender stored procedure DB2GSE.GSE_ENABLE DX documented in /BM DB2 Spatial
Extender User’s Guide and Reference.

Note also that ArcCatalog and ArcSDE administration tools, sdelayer, shp2sde, and cov2sde,
provide support for creating the spatial index.

See Chapter 2, ‘Essential configuring and tuning’, for a discussion on selecting the spatial
index’s grid cell sizes.

Updating statistics

The DB2 optimizer may not use the spatial index unless the statistics on the table are
up-to-date. If the spatial index is created after the data has been loaded, the statistics are
up-to-date and the optimizer will use the index. However, if the index is created, and data is
loaded afterwards, the optimizer will not use the spatial index because the statistics will be
out of date. To update the statistics use the update statistics DB2 SQL statement.

RUNSTATS ON TABLE <table_name> WITH DISTRIBUTION AND DETAILED INDEXES ALL;

When updating statistics for ArcSDE feature classes, you should use the tools provided by
either ArcCatalog or the update dbms_stats operation of the ArcSDE administration tool
sdetable. For more information on using these tools to update statistics, see Chapter 2,
‘Essential configuring and tuning’.

Spatial Extender data types

The Oxford American Dictionary defines the noun ‘geometry’ as “the branch of mathematics
dealing with the properties of and relations of lines, angles, surfaces, and solids.” On August
11, 1997, the OGC, in its publication of OpenGIS Features for ODBC (SOL) Implementation
Specification, coined another definition for the noun geometry. The word was selected to
define the geometric features that, for the past millennium or more, cartographers have used
to map the world. Typically, points represent an object at a single location, linestrings
represent a linear characteristic, and polygons represent a spatial extent. A very abstract
definition of the Open GIS noun geometry might be “a point or aggregate of points
symbolizing a feature on the ground”. This definition, however, fails to describe the rich set
of properties and functionality associated with geometry.

Appendix B DB2 Spatial Extender geometry types 59

To understand geometry in this context, it is easier to describe it as it has been implemented
within the DB2 Spatial Extender a UDT, and like all UDTs in an object relational system, it
has a unique set of properties and methods.

ST Geometry columns as a data type allow you to define columns that store spatial data. The
ST Geometry data type itself is an abstract noninstantiable superclass, the subclasses of
which are instantiable. An instantiated data type is one that can be defined as a table column
and have values of its type inserted into it. A column can be defined as type ST Geometry,
but ST Geometry values cannot be inserted into it since they cannot be instantiated. Only the
subclass values can be inserted into this column because only they can be instantiated.
Therefore, the ST Geometry data type can accept and store any of its subclasses, while its
subclass data types can only accept their own values.

Throughout the remainder of this document the term geometry or geometries collectively
refers to the superclass ST Geometry data type and all of its subclass data types. Whenever it
is necessary to specify the geometry superclass directly, it will be referred to as the

ST Geometry superclass or the ST Geometry data type.

ST Geometry
ST Point ST Curve ST Surface GeometryCollection
ST_LineString ST Polygon
ST_MultiSurface ST_MultiCurve ST_MultiPoint

7 I

ST MultiPolygon ST MultiLineString

Figure B.1 The hierarchy of the ST_Geometry datatype is divided into the subtypes ST_Point, ST_Curve
and ST_Surface simple types and the geometry collections ST_MultiSurface, ST_MuiltiCurve, and
ST_MuiltiPoint. ST_LineString is the subtype of ST_Curve. ST_Polygon is the subtype of ST_Surface.
ST_MuiltiPolygon is the subtype of ST_MuiltiSurface. ST_MultiLineString is the subtype of ST_MultiCurve.

Geometry properties

Each subclass inherits the properties of the ST Geometry superclass but also has properties
of its own. Functions that operate on the ST Geometry data type will accept any of the

60

ArcSDE Configuration and Tuning Guide for DB2

subclass data types. However, some functions have been defined at the subclass level and
will only accept certain subclasses’ data types.

Interior, boundary, exterior

All geometries occupy a position in space defined by their interior, boundary, and exterior.
The exterior of a geometry is all space not occupied by the geometry. The boundary of a
geometry serves as the interface between its interior and exterior. The interior is the space
occupied by the geometry. The subclass inherits the interior and exterior properties directly;
however, the boundary property differs for each.

The ST Boundary Spatial Extender function takes an ST Geometry and returns an
ST Geometry that represents the source ST Geometry’s boundary.

Simple or nonsimple

Some subclasses of ST Geometry (ST LineStrings, ST MultiPoints, and

ST MultiLineStrings) are either simple or nonsimple. They are simple if they obey all
topological rules imposed on the subclass and nonsimple if they “bend” a few. An

ST LineString is simple if it does not intersect its interior. An ST MultiPoint is simple if
none of its elements occupy the same coordinate space. An ST MultiLineString is simple if
none of its element’s interiors are intersected by its own interior.

The Spatial Extender ST IsSimple predicate function takes an ST Geometry and returns
1 (TRUE) if the ST _Geometry is simple and 0 (FALSE) otherwise.

Empty or not empty

A geometry is empty if it does not have any points. An empty geometry has a NULL
envelope, boundary, interior, and exterior. An empty geometry is always simple and can have
z-coordinates or measures. Empty linestrings and multilinestrings have a 0 length. Empty
polygons and multipolygons have a 0 area.

The Spatial Extender ST IsEmpty predicate function takes an ST Geometry and returns
1 (TRUE) if the ST Geometry is empty and 0 (FALSE) otherwise.

Number of points

A geometry can have zero or more points. A geometry is considered empty if it has zero
points. The point subclass is the only geometry that is restricted to zero or one point; all other
subclasses can have zero or more.

Envelope

The envelope of a geometry is the bounding geometry formed by the minimum and
maximum (X,y) coordinates. The envelopes of most geometries form a boundary rectangle;
however, the envelope of a point is the point since its minimum and maximum coordinates

Appendix B DB2 Spatial Extender geometry types 61

are the same, and the envelope of a horizontal or vertical linestring is a linestring represented
by the boundary (the endpoints) of the source linestring.

The Spatial Extender ST _Envelope function takes an ST Geometry and returns an
ST Geometry that represents the source ST Geometry’s envelope.

Dimension

A geometry can have a dimension of 0, 1, or 2.

The dimensions are
0—has neither length nor area
1—has a length

2—contains area

The point and multipoint subclasses have a dimension of 0. Points represent zero-
dimensional features that can be modeled with a single coordinate, while multipoints
represent data that must be modeled with a cluster of unconnected coordinates.

The subclasses linestring and multilinestring have a dimension of 1. They store road
segments, branching river systems, and any other features that are linear in nature.

Polygon and multipolygon subclasses have a dimension of 2. Forest stands, parcels, water
bodies, and other features whose perimeter encloses a definable area can be rendered by
either the polygon or multipolygon data type.

Dimension is important not only as a property of the subclass but also in playing a part in
determining the spatial relationship of two features. The dimension of the resulting feature or
features determines whether or not the operation was successful. The dimension of the
features is examined to determine how they should be compared.

The Spatial Extender ST Dimension function takes an ST Geometry and returns its
dimension as an integer.

Z-coordinates

Some geometries have an associated altitude or depth. Each of the points that form the
geometry of a feature can include an optional z-coordinate that represents an altitude or depth
normal to the earth’s surface.

The Spatial Extender Is3D predicate function takes an ST Geometry and returns 1 (TRUE) if
the function has z-coordinates and 0 (FALSE) otherwise.

62

ArcSDE Configuration and Tuning Guide for DB2

Measures

Measures are values assigned to each coordinate. The value represents anything that can be
stored as a double-precision number.

The Spatial Extender IsMeasured predicate function takes a geometry and returns 1 (TRUE)
if it contains measures and 0 (FALSE) otherwise.
Spatial reference system

The spatial reference system identifies the coordinate transformation matrix for each
geometry.

The Spatial Extender ST _SRID function takes an ST Geometry and returns its spatial
reference identifier as an integer.

Instantiable subclasses

The ST Geometry data type is not instantiable but instead must store its instantiable
subclasses. The subclasses are divided into two categories: the base geometry subclasses and
the homogeneous collection subclasses. The base geometries include ST Point,

ST LineString, and ST Polygon, while the homogeneous collections include ST MultiPoint,
ST MultiLineString, and ST MultiPolygon. As the names imply, the homogeneous
collections are collections of base geometries. In addition to sharing base geometry
properties, homogeneous collections have some of their own properties as well.

The Spatial Extender ST GeometryType function takes an ST Geometry and returns the
instantiable subclass in the form of a character string. The Spatial Extender

ST NumGeometries function takes a homogeneous collection and returns the number of
base geometry elements it contains. The Spatial Extender ST GeometryN function takes a
homogeneous collection and an index and returns the nth base geometry.

ST_Point
An ST Point is a zero-dimensional geometry that occupies a single location in coordinate
space. An ST Point has a single x,y coordinate value. An ST Point is always simple and has

a NULL boundary. It is used to define features such as oil wells, landmarks, and elevations.

Spatial Extender functions that operate solely on the ST Point data type include ST X,
ST Y, Z,and M.

The ST X function returns a point data type’s x coordinate value as a double-precision
number.

The ST _Y function returns a point data type’s y coordinate value as a double-precision
number.

The Z function returns a point data type’s z coordinate value as a double-precision number.

Appendix B DB2 Spatial Extender geometry types 63

The M function returns a point data type’s m coordinate value as a double-precision number.

ST_LineString

An ST LineString is a one-dimensional object stored as a sequence of points defining a
linear interpolated path. The ST LineString is simple if it does not intersect its interior. The
endpoints (the boundary) of a closed ST LineString occupy the same point in space. An
ST LineString is a ring if it is both closed and simple. As well as the other properties
inherited from the superclass ST Geometry, ST LineStrings have length. ST LineStrings
are often used to define linear features such as roads, rivers, and power lines.

The endpoints normally form the boundary of an ST LineString unless the ST LineString is
closed, in which case the boundary is NULL. The interior of an ST LineString is the
connected path that lies between the endpoints, unless it is closed, in which case the interior

is continuous.

Spatial Extender functions that operate on ST LineStrings include ST StartPoint,
ST EndPoint, ST PointN, ST Length, ST NumPoints, ST IsRing, and ST IsClosed.

The ST _StartPoint function takes an ST LineString and returns its first point.
The ST EndPoint function takes an ST LineString and returns its last point.

The ST PointN function takes an ST LineString and an index to an nth point and returns that
point.

The ST Length function takes an ST LineString and returns its length as a double-precision
number.

The ST NumPoints function takes an ST LineString and returns the number of points in its
sequence as an integer.

The ST IsRing predicate function takes an ST LineString and returns 1 (TRUE) if the
ST LineString is a ring and 0 (FALSE) otherwise.

The ST IsClosed predicate function takes an ST LineString and returns 1 (TRUE) if the
ST LineString is closed and 0 (FALSE) otherwise.

e O 2

(1))

Examples of ST_LineString objects: (1) a simple nonclosed ST_LineString, (2) a nonsimple nonclosed
ST_LineString, (3) a closed simple ST_LineString and therefore is a ring, and (4) a closed nonsimple
ST _LineString and is not a ring.

64

ArcSDE Configuration and Tuning Guide for DB2

ST_Polygon

An ST Polygon is a two-dimensional surface stored as a sequence of points defining its
exterior bounding ring and 0 or more interior rings. ST Polygon, by definition, is always
simple. Most often ST Polygon defines parcels of land, water bodies, and other features

having spatial extent.

(1)) 3

Examples of ST_Polygon objects: (1) an ST_Polygon whose boundary is defined by an exterior ring; (2) an
ST_Polygon whose boundary is defined by an exterior ring and two interior rings, and the area inside the
interior rings is part of the ST_Polygon’s exterior; and (3) a legal ST_Polygon because the rings intersect at
a single tangent point.

The exterior and any interior rings define the boundary of an ST Polygon, and the space
enclosed between the rings defines the ST Polygon’s interior. The rings of an ST Polygon
can intersect at a tangent point but never cross. In addition to the other properties inherited
from the superclass ST Geometry, ST Polygon has area.

Spatial Extender functions that operate on ST Polygon include ST Area, ST ExteriorRing,
ST NumlnteriorRing, ST InteriorRingN, ST Centroid, and ST PointOnSurface.

The ST_Area function takes an ST Polygon and returns its area as a double-precision
number.

The ST ExteriorRing function takes an ST Polygon and returns its exterior ring as an
ST LineString.

The ST NumlnteriorRing takes an ST Polygon and returns the number of interior rings that
it contains.

The ST InteriorRingN function takes an ST Polygon and an index and returns the nth
interior ring as an ST LineString.

The ST _Centroid function takes an ST Polygon and returns an ST Point that is the center of
the ST Polygon’s envelope.

The ST PointOnSurface function takes an ST Polygon and returns an ST Point that is
guaranteed to be on the surface of the ST Polygon.

Appendix B DB2 Spatial Extender geometry types 65

ST_MultiPoint

An ST MultiPoint is a collection of ST Points and, just like its elements, it has a dimension
of 0. An ST MultiPoint is simple if none of its elements occupy the same coordinate space.
The boundary of an ST MultiPoint is NULL. ST MultiPoints define aerial broadcast
patterns and incidents of a disease outbreak.

ST_MultiLineString

An ST MultiLineString is an collection of ST LineStrings. ST MultiLineStrings are simple
if they only intersect at the endpoints of the ST LineString elements. ST MultiLineStrings
are nonsimple if the interiors of the ST LineString elements intersect.

The boundary of an ST MultiLineString is the nonintersected endpoints of the

ST LineString elements. The ST MultiLineString is closed if all its ST LineString elements
are closed. The boundary of an ST MultiLineString is NULL if all the endpoints of all the
elements are intersected. In addition to the other properties inherited from the superclass

ST Geometry, ST MultiLineStrings have length. ST MultiLineStrings are used to define
streams or road networks.

W
A

Examples of ST_MuiltiLineStrings: (1) a simple ST_MultiLineString whose boundary is the four endpoints of
its two ST_LineString elements; (2) a simple ST_MultiLineString because only the endpoints of the
ST_LineString elements intersect. The boundary is two nonintersected endpoints; (3) a nonsimple
ST_MultiLineString because the interior of one of its ST_LineString elements is intersected. The boundary
of this ST_MuiltiLineString is the three nonintersected endpoints; (4) a simple nonclosed
ST_MultiLineString. It is not closed because its element ST_LineStrings are not closed. It is simple
because none of the interiors of any of the element ST_LineStrings intersect; (5) a simple closed
ST_MultiLineString. It is closed because all its elements are closed. It is simple because none of its
elements intersect at the interiors.

Spatial Extender functions that operate on ST MultiLineStrings include ST Length and
ST IsClosed.

66

ArcSDE Configuration and Tuning Guide for DB2

The ST Length function takes an ST MultiLineString and returns the cumulative length of
allits ST LineString elements as a double-precision number.

The ST IsClosed predicate function takes an ST MultiLineString and returns 1 (TRUE) if
the ST MultiLineString is closed and 0 (FALSE) otherwise.

ST_MultiPolygon

The boundary of an ST MultiPolygon is the cumulative length of its elements’ exterior and
interior rings. The interior of an ST MultiPolygon is defined as the cumulative interiors of its
element ST Polygons. The boundary of an ST MultiPolygon’s elements can only intersect at
a tangent point. In addition to the other properties inherited from the superclass

ST Geometry, ST MultiPolygons have area. ST MultiPolygons define features such as a
forest stratum or a noncontiguous parcel of land such as a Pacific island chain.

(1) @

Examples of ST_MuiltiPolygon: (1) an ST_MultiPolygon with two ST_Polygon elements. The boundary is
defined by the two exterior rings and the three interior rings; and (2) an ST_MuiltiPolygon with two
ST_Polygon elements. The boundary is defined by the two exterior rings and the two interior rings. The two
ST_Polygon elements intersect at a tangent point.

Spatial Extender functions that operate on ST MultiPolygons include ST Area,
ST Centroid, and ST PointOnSurface.

The ST Area function takes an ST MultiPolygon and returns the cumulative ST Area of its
ST Polygon elements as a double-precision number.

The ST Centroid function takes an ST MultiPolygon and returns an ST Point that is the
center of an ST MultiPolygon’s envelope.

The ST PointOnSurface function takes an ST MultiPolygon and returns an ST Point that is
guaranteed to be normal to the surface of one of its ST Polygon elements.

69

A

ArcCatalog 2,5, 30, 31, 35, 38,
42,43

ArcGIS Desktop 30

Arclnfo 31

ArcInfo Workstation 30

ArcStorm libraries 34

ArcToolbox 2, 30, 31, 35, 37, 42,
43

ArcView GIS 3.2 30

C

CAD Client 30
configuration keyword 1, 31
cov2sde 29, 34,56
coverage 34

CREATE INDEX 25
CREATE TABLE 25

D

DB2
RUNSTATS statement 6
DBTUNE configuration keyword
12
DBTUNE configuration keywords
DATA_DICTIONARY 13
DEFAULTS 12
LOGFILE _DEFAULTS 18
NETWORK DEFAULTS 24
DBTUNE storage parameters 11
A _INDEX ROWID 20
A _INDEX STATEID 20
A _INDEX USER 20
A _STORAGE 20
AUX STORAGE 21
B _INDEX ROWID 20
B _INDEX USER 19
B _STORAGE 19
BLK STORAGE 21
BND_STORAGE 21
COMMENT 18
D INDEX DELETED AT
21
D INDEX STATE ROWID
20
D STORAGE 20
LOB_SIZE 13
RAS_STORAGE 21
UL NETWORK TEXT 17
UL TEXT 17
DBTUNE table 1,25
dbtune.sde file 1,11, 18
declining resolution pyramid 43
disk I/O contention 4

E

endpoints 64

F

falsem 56
falsex 56
falsey 56
falsez 56

G

geographic information system
53

geometry 56, 59

properties 60

GIS See geographic information
system

Graphics Interchange Format
(GIF) 41

|
instantiated data type 59
J

Joint Photographic Experts Group
(JPEG) 41

L

LIBRARIAN libraries 34
load-only I/O mode 32, 35

MapObjects 30
measures 63
multiversioned 33
munits 56

N
normal I/O mode 33, 35
0

ODBC 54
Open GIS Consortium 53, 59

P

privileges
granting 33

R

raster band auxiliary table 50
raster band table 48

raster bands 41

raster blocks table 50

raster columns 35, 41

raster table 47
RASTER_COLUMNS table 46

S

SDE_LOGFILE_DATA 18
SDE_LOGFILES 18
sde2cov 36
sde2shp 36
sde2tbl 36
sdedbtune 2, 25
sdeexport 36
sdegroup 29
SDEHOME 25
sdeimport 29, 34, 35
sdelayer 29, 32, 33
sdetable 29, 31, 36
update_dbms_stats 5
shapes
properties 60
shp2sde 29, 32, 34, 56
shpinfo 34
simple 64
spatial columns 54, 57
spatial data 53
Spatial Extender 53, 57
Spatial Extender datatypes
ST Geometry 59
ST LineString 63, 64
ST MultiLineString 63, 66
ST MultiPoint 63, 66
ST MultiPolygon 63,67
ST Point 63
ST Polygon 57, 63, 65
Spatial Extender functions
Is3D 62
IsMeasured 63
M 63
ST Area 65, 68
ST Boundary 61
ST Centroid 65, 68
ST Dimension 62
ST EndPoint 64
ST Envelope 61
ST ExteriorRing 65
ST GeometryN 63
ST GeometryType 63
ST InteriorRingN 65
ST IsClosed 64, 67
ST IsEmpty 61
ST IsRing 64
ST IsSimple 61
ST Length 64, 67
ST NumGeometries 63
ST NumlnteriorRings 65
ST NumPoints 64
ST Overlaps 53
ST PointN 64
ST PointOnSurface 65, 68
ST SRID 63
ST StartPoint 64
ST X 63

Index

70

STY 63

Z 63
Spatial Extender homogeneous

collections 63

spatial index 58
spatial joins 53
spatial reference identifier 56
spatial tables 57
spatial references table 55, 56
spatially enabled 54
SQL 53
storage parameters 1
subclass data types 59
Survey Multibinary 14

T

tagged image file format (TIFF)
41

tbl2sde 29

Topology 14

U

UDTs See user-defined types
user-defined types 53

w

well-known binary representation
54

well-known text representation
54

WKB See well-known binary
representation

WKT See well-known text
representation

X
Xyunits 56

z

z coordinates 62
zunits 56

69

	ch01_getstarted
	Some tuning tips
	Arranging your data
	DBTUNE storage parameters

	Creating spatial data in a DB2 database

	Essential configuring and tuning
	How much time should you spend tuning?
	Reducing disk I/O contention
	Arranging the database components
	Separate tables from their indexes
	Establish the threshold table size
	Store small tables and indexes by access
	Positioning the files

	Updating DB2 statistics
	Tuning the spatial index
	How the Spatial Extender generates a spatial index
	How the Spatial Extender uses the spatial index
	Selecting the optimum grid cell sizes
	Selecting the number of levels

	Configuring DBTUNE storage parameters
	The DBTUNE table
	Arranging storage parameters by keyword
	DEFAULTS keyword
	Setting the default BLOB size
	Setting the system table DATA_DICTIONARY keyword
	
	
	
	UI_TEXT ""

	The TOPOLOGY keyword
	Changing the appearance of DBTUNE keywords in the ArcInfo user interface
	Adding a comment to a keyword
	LOGFILE keywords

	Defining the storage parameters
	Meta parameters
	Table parameters
	The business table storage parameter
	The business table index storage parameters
	Multiversioned table storage parameters
	Raster table storage parameters
	Network class composite keywords
	The NETWORK_DEFAULTS keyword

	DB2 default parameters
	Editing the DBTUNE table
	The complete list of ArcSDE 8.3 storage parameters

	Managing tables, feature classes, and raster columns
	Data creation
	Creating and populating a feature class
	Creating a feature class “from scratch”
	Creating a business table
	Adding a feature class
	Switching to load-only mode
	Inserting records into the feature class
	Switching the table to normal I/O mode
	Versioning your data
	Granting privileges on the data

	Creating and loading feature classes from existing data
	
	shp2sde
	cov2sde
	sdeimport

	Appending data to an existing feature class

	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications
	Loading data
	Versioning your data
	Granting privileges
	Creating a raster column with ArcCatalog

	AppendixA_Raster
	Raster schema
	RASTER_COLUMNS table
	Business table
	Raster table (SDE_RAS_<rastercolumn_id>)
	Raster band table (SDE_BND_<rastercolumn_id>)
	Raster blocks table (SDE_BLK_<rastercolumn_id>)
	Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

	AppendixB_Geometry
	How the DB2 Spatial Extender works
	Adding records to the DB2GSE.GSE_SPATIAL_REF table
	Creating feature classes in a DB2 database
	Creating a spatial index
	Updating statistics
	Spatial Extender data types
	Geometry properties
	Interior, boundary, exterior
	Simple or nonsimple
	Empty or not empty
	Number of points
	Envelope
	Dimension
	Z-coordinates
	Measures
	Spatial reference system

	Instantiable subclasses
	ST_Point
	ST_LineString
	ST_Polygon
	ST_MultiPoint
	ST_MultiLineString
	ST_MultiPolygon

	index

