
ArcGIS™ 8.3

ArcSDE™ Configuration and Tuning Guide for Informix®

Copyright © 1986–2002 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable
international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying or recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, MapObjects, ArcView, ArcIMS, SDE, ArcSDE, ArcInfo Librarian, Spatial Database Engine,
ArcCatalog, ArcToolbox, ArcMap, ArcGIS, ArcStorm, ArcInfo, ArcObjects, ArcExplorer, ArcEditor,
and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United
States, the European Community, or certain other jurisdictions.
The names of other companies and products mentioned herein are trademarks or registered trademarks
of their respective trademark owners.

iii

Contents

Contents iii

Chapter 1 Getting started 1
Tuning and configuring the Informix instance 1
Arranging your data 2
Creating spatial data in an Informix database 3
Connecting to Informix 3
National language support 3
Backup and recovery 5

Chapter 2 Essential Informix configuring and tuning 5
How much time should you spend tuning? 5
Windows NT/2000 Systems 7
Updating the onconfig file 7
Tuning disk I/O contention 12
Arranging your data 19
UNIX Systems 24
Updating the onconfig file 24
Tuning disk I/O contention 30
Arranging your data 37
Updating Informix statistics 42
Tuning CPU 44
Tuning memory 49

Chapter 3 Configuring DBTUNE storage parameters 50
The DBTUNE table 50
Using the DBTUNE table 52
Defining the storage parameters 54
Arranging storage parameters by keyword 57
Informix default parameters 69
Editing the storage parameters 69
Converting SDE 3.x storage parameters to ArcSDE 8.3 storage parameters 69
The complete list of ArcSDE storage parameters 71

iv ArcSDE Configuration and Tuning Guide for Informix

Chapter 4 Managing tables, feature classes, and raster columns 70
Data creation 70
Creating and populating raster columns 77
Creating views 77
Exporting data 78
Schema modification 78
Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications 78

Chapter 5 National language support 84
Creating an Informix database with a specific language locale 84
Setting the NLS_LANG variable on the client 84
Configuring the Informix server locale 85
Configuring the Informix locale for ArcSDE 86
Setting the locale for ArcSDE 86

Chapter 6 Backup and recovery 88
Data recovery system 88
What is a Dynamic Server recovery system? 88
Backing up the database 89
Recovering the database 89

Appendix A Estimating the size of your tables and indexes 91
Estimating the size of your spatial tables 91
Estimating the size of your ArcSDE indexes 94

Appendix B Storing raster data 96
Raster schema 98
Creating a raster catalog 104

Appendix C Informix Spatial DataBlade geometry types 108
How the Informix Spatial DataBlade works 109
Spatial DataBlade data types 114
Instantiable subclasses 118

Index 125

1

C H A P T E R 1

Getting started

Creating and populating a geodatabase is arguably a simple process,
especially if you use ESRI® ArcCatalogTM or ArcToolboxTM to load the data.
So why is there a configuration and tuning guide? Well, while database
creation and data loading can be relatively simple, the resulting performance
may not be acceptable. It requires some effort to build a database that
performs optimally. This book provides instruction for configuring the
physical storage parameters of your data in the database management system
(DBMS). This book also provides some important guidelines for configuring
and tuning the Informix instance itself.

Tuning and configuring the Informix instance
Building an efficient geodatabase involves properly tuning and configuring the Informix
instance and proper arrangement and management of the database's tables and indexes.
Chapter 2, ‘Essential Informix configuring and tuning’, teaches you how to do just that.

Chapter 2 lists the necessary steps to create a geodatabase. You will learn how to properly:

� Create an Informix database.

� Create the tablespaces that will store your tables and indexes.

� Tune the Informix instance that will mount and open the database.

2 ArcSDE Configuration and Tuning Guide for Informix

� Manage the optimization statistics of the tables and indexes after they have been created
and populated.

Arranging your data
Every table and index created in a database has a storage configuration. How you store your
tables and indexes affects your database's performance.

DBTUNE storage parameters

How is the storage configuration of the tables and indexes controlled? ArcSDETM reads
storage parameters from the DBTUNE table to define physical data storage parameters of
ArcSDE tables and indexes. The storage parameters are grouped into configuration keywords.
You assign configuration keywords to your data objects (tables and indexes) when you create
them from an ArcSDE client program.

Prior to ArcSDE 8.3, configuration keywords were stored in a dbtune.sde file maintained
under the ArcSDE etc directory. The dbtune.sde file is still used by ArcSDE 8.3 as the initial
source of storage parameters. When the ArcSDE 8.3 file sdesetupinfx command executes, the
configuration parameters are read from the dbtune.sde file and written into the DBTUNE
table.

It should also be noted that ArcSDE 8.3 has simplified the storage parameters. Rather than
matching each Informix storage parameter with an ArcSDE storage parameter, the ArcSDE
storage parameters have evolved into configuration strings and represent the entire storage
configuration for a table or index. Pre-ArcSDE 8.3 storage parameters are automatically
converted to the new simpler ArcSDE 8.3 storage parameters. The ArcSDE storage parameter
holds all the Informix storage parameters of an Informix CREATE TABLE or CREATE
INDEX statement.

The sdedbtune command has been introduced at ArcSDE 8.3 to provide the ArcSDE
administrator with an easy way to maintain the DBTUNE table. The sdedbtune command
exports and imports the records of the DBTUNE table to a file in the ArcSDE etc directory.

The ArcSDE 8.3 installation creates the DBTUNE table. If the dbtune.sde file is absent or
empty, sdesetupinfx creates the DBTUNE table and populates it with default configuration
keywords representing the minimum ArcSDE configuration.

Chapter 1 Getting started 3

In almost all cases, you will populate the table with specific storage parameters for your
database. Chapter 3, ‘Configuring DBTUNE storage parameters’, describes in detail the
DBTUNE table and all possible storage parameters and default configuration keywords.

Creating spatial data in an Informix database
ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provide the
easiest method for creating spatial data in an Informix database. With these tools you can
convert ESRI® coverages and shapefile format into ArcSDE feature classes. You can also
import an ArcSDE export file containing the data of a business table, feature class, or raster
column.

Multiversioned ArcSDE data can be edited directly with either file ArcCatalog or file
ArcMapTM.

An alternative approach to creating spatial data in an Informix database is to use the
administration tools provided with ArcSDE.

Chapter 4, ‘Managing tables, feature classes, and raster columns’, describes the methods used
to create and maintain spatial data in an Informix database.

Connecting to Informix
ArcSDE clients connect to the ArcSDE service. Under the ArcSDE three-tiered architecture,
the ArcSDE client connects to the ArcSDE service, and the ArcSDE service spawns a
dedicated gsrvr process that connects to the Informix instance. The gsrvr process brokers the
spatial data between the ArcSDE client and the Informix instance. The ArcSDE service and
the gsrvr processes typically reside on the Informix host machine, while ArcSDE clients are
typically on remote machines.

National language support
If you intend to support a database that does not use the Informix default 7-bit United States
ASCII English (US7ASCII) character set, you will have to take a few extra steps in creating
the Informix database. You will also need to set the national language system environment of
the client applications.

4 ArcSDE Configuration and Tuning Guide for Informix

Chapter 5, ‘Global language support’, describes how to configure the Informix database and
set up the application environment.

Chapter 1 Getting started 5

Backup and recovery
Developing and testing a backup strategy is every bit as important as the effort put into
creating it. A good backup strategy protects the database in the event of a media failure.

Chapter 6, ‘Backup and recovery’, lists the ArcSDE files that must be included as part of the
regular Informix backup. In addition, suggested Informix reference materials are listed for
further reading.

5

C H A P T E R 2

Essential Informix configuring
and tuning

The performance of an ArcSDE application depends to some extent on how
well you configure and tune Informix. This chapter provides basic guidelines
for tuning an Informix database for use with an ArcSDE application. It
assumes that you have a basic understanding of the Informix data structures,
such as dbspaces, sbspaces, tables, and indexes, and that you are proficient
with Structured Query Language (SQL). We encourage you to refer to
Informix’s extensive documentation, in particular Informix Performance
Guide for Informix Dynamic Server 2000 and Informix Administrator’s Guide
for Informix Dynamic Server 2000 for your appropriate Informix release.

How much time should you spend tuning?
The appreciable difference between a well-tuned database and one that is not depends on how
it is used. A database created and used by a single user does not require as much tuning as a
database that is in constant use by many users. The reason is quite simple—the more people
using a database, the greater the contention for its resources.

By definition, tuning is the process of sharing resources among users by configuring the
components of a database to minimize contention and remove bottlenecks. The more people
you have accessing your databases, the more effort is required to provide access to a finite
resource.

6 ArcSDE Configuration and Tuning Guide for Informix

A well-tuned Informix database makes optimum use of available central processing unit
(CPU) and memory while minimizing disk input/output (I/O) contention. Database
administrators approach this task knowing that each additional hour spent will often return a
lesser gain in performance. Eventually, they reach a point of diminishing returns, where it is
impractical to continue tuning; instead, they continue to monitor the server and address
performance issues as they arise.

Chapter 2 Essential Informix configuring and tuning 7

Windows NT/2000 Systems

Updating the onconfig file
Informix maintains its configuration parameters in the onconfig file located in the
%INFORMIXDIR%\etc directory on Windows NT/2000. The parameters of this file control
the server's memory use, the size and number of log files, temporary space, the location of the
error logs, and much more. The onconfig file is read whenever the Informix server is started.
So changes to the parameter require that you restart the server.

Naming the onconfig file

The standard onconfig file, onconfig.std, contains the default settings of the Informix
parameters. Do not edit this file; instead, preserve it as a record of the default settings.

On Windows NT/2000, the Informix Dynamic Server installation process automatically
copies the onconfig.std file to the ‘Onconfig’ file.

For the remainder of this document, when the onconfig file is mentioned, we are referring to
the %INFORMIXDIR%\etc\Onconfig on Windows NT/2000. On Windows NT/2000, the
installation also sets the system variable ONCONFIG to Onconfig. The ‘Onconfig’ file is also
defined in the Windows NT registry as the Informix onconfig file. If you intend to use an
onconfig file with a different name, you need to change the ONCONFIG environment in the
registry and the %INFORMIXDIR%\setenv.cmd file.

Some important onconfig parameters

The following is a list of some of the more important onconfig parameters whose default
values you should change to improve the performance of your Informix server when using it
with ArcSDE.

8 ArcSDE Configuration and Tuning Guide for Informix

BUFFERS

The BUFFERS parameter file controls the size of the regular buffers, the area of memory in
which Informix stores the most recently used page of data. The first reader reads the page
from disk, while subsequent readers read the page from the regular buffer until it is paged out
of memory. A page will be paged out of the regular buffer if it is has been unused over a
period of time and the memory is needed to hold other pages that are being used.

Increase the number of data buffers to 2,000 or 25 percent of your physical RAM, whichever
is greater. BUFFERS is specified in pages. If your pages are 2 kilobytes (page size can be
determined with the Informix command onstat -b) and your physical RAM is 256 MB,
BUFFERS would be calculated as follows:
BUFFERS = <physical RAM converted to kilobytes> * 25% /
 <page size in kilobytes>
 = (256 * 1024) * 0.25 / 2
 = 32768

BUFFERS 32768

LOGSIZE

The LOGSIZE parameter controls the default size of the logical logs. The size of the logical
logs can be specified when they are created with the INFORMIX onparams utility. However,
if the size is not specified, LOGSIZE is used.

Set the logical log file size to 100,000 kilobytes. When the logical logs are moved out of the
rootdbs, they will be created with this size.
LOGSIZE 100000

LOG_BACKUP_MODE

The LOG_BACKUP_MODE parameter specifiesthe mode in which logical logs are backed
up. This mode can be either continuous or manual. Continuous mode will allow you to
automatically do logical log backups when required.
LOG_BACKUP_MODE CONT

LOGSMAX

The LOGSMAX parameter specifies the maximum number of logical logs that may be
created. Increase the LOGSMAX parameter so that you can create new logical logs in order to
move them out of the rootdbs.

Set the maximum number of logical log files to 100.

Chapter 2 Essential Informix configuring and tuning 9

LOGSMAX 100

CLEANERS

CLEANERS specifies the page cleaner threads started by the INFORMIX instance. Page
cleaner threads periodically wake up and perform background writes of batches of dirty pages
held in the regular buffers to disk.

Set the number of page cleaners to 6 or the number of disks that contain frequently accessed
data, whichever is higher.
CLEANERS 6

STACKSIZE

STACKSIZE specifies the amount of stack allocated to the INFORMIX instance. Although
for most applications Informix recommends that this parameter be left at its default value of
32 (kilobytes), for ArcSDE it is very important to increase the size of this parameter to 64
(kilobytes) in support of the Informix Spatial DataBlade user-defined datatypes (UDTs)
accessed by ArcSDE.

Increase the initial stack size of each thread to 64 kilobytes. Set the STACKSIZE parameter to
64.
STACKSIZE 64

RA_PAGES

This read-ahead parameter sets the number of data and index pages that are cached in the
regular buffers whenever a sequential scan of one or more tables occurs.

Set the read-ahead pages to 125.
RA_PAGES 125

RA_THRESHOLD

RA_THRESHOLD, the read-ahead threshold, specifies the number of remaining unread
pages that in the regular buffers triggers another call to read in more pages from disk.

Set the number of unprocessed pages that trigger another read ahead to 85.
RA_THRESHOLD 85

10 ArcSDE Configuration and Tuning Guide for Informix

DUMPDIR

The DUMPDIR parameter specifies the location of the dump directory where error log files
are written in the event of an assertion failure.

Leave the dump directory set to tmp if you have adequate space there. However, you can
create a tmp directory under the Informix installation directory and set DUMPDIR to that.
Should an assert failure occur, the diagnostic files are one directory below the online.log file
that references them.
DUMPDIR C:\informix\tmp /* Windows NT

RESIDENT

The RESIDENT parameter specifies which portion of the INFORMIX instances shared
memory can be swapped out of the operating system's shared memory. Allowing as many
portions of the instance’s shared memory to remain resident eliminates a large amount of I/O
and context switching of the instance’s memory structures.

Setting the RESIDENT parameter to -1 keeps as many of the instance’s memory structures as
possible resident given the amount of physical memory and system resources available.
RESIDENT –1

MULTIPROCESSOR

The MULTIPROCESSOR parameter specifies whether the Informix Server machine has one
or multiple processors in which to use.

Set to 0 if the Informix Server machine has only one processor and set to 1 if there are
multiple processors.

System parameters that must be adjusted prior to initialization

TAPEDEV

The TAPEDEV parameter specifies the device used to back up the dbspaces. During the
loading phase of your database it is often a good idea to set this parameter to the NUL device.
After the data is loaded set the parameter to the proper tape device. The rationale behind this is
that the data is already backed up by the data source that you are loading it from. Therefore, if
a dbspace is lost to a disk failure, the data can be restored from the original data source. Once
the database is loaded, you can set it to your tape device.
TAPEDEV NUL

Chapter 2 Essential Informix configuring and tuning 11

LTAPEDEV

The LTAPEDEV parameter specifies the tape device the ONTAPE utility backs up the logical
log files to.

Set this to the NUL device. Once the server is up, you can set it to your tape device if you
intend to archive the log files.
LTAPEDEV NUL

NETTYPE

Set separate NETTYPE parameters to configure the poll threads for the shared memory and
TCP/IP network protocols. The settings below allow 20 local connections and 200 remote
connections. The configuration of the NETTYPE parameter is discussed in detail in the
‘Network virtual processors’ section that follows. Set the NETTYPE parameters to the
expected number of local and remote connections, as in the example for Windows NT/2000
below:

Windows NT/Windows/2000
NETTYPE olsoctcp,1,,NET

Restarting the Informix Dynamic Server

To apply the changes made to the onconfig file to the Informix kernel, you must restart the
server.

Restarting the Informix service

The server is started and stopped from the Windows NT/2000 Service panel found on the
control panel. From the Start menu, press Programs>Settings>Control Panel and double-click
the Services icon. Highlight the INFORMIX-Universal Server service and press the Stop
button on the Services panel. Press Yes when prompted if you really want to do this and then
press the Start button to restart the server. After a few seconds, the server should start up
again. If it doesn’t, check the %INFORMIXDIR%\online.log file to determine why the server
won’t start. Typographic errors in the onconfig file are the most common problems. Correct
the problem and restart the server.

12 ArcSDE Configuration and Tuning Guide for Informix

Tuning disk I/O contention
Disk I/O contention can prove to be one of the more difficult challenges for a DBA to
overcome. Unlike memory and CPU issues that can be solved by acquiring more of these
resources once all tuning procedures have been exhausted, the reduction of disk I/O
contention must be solved through proper planning and administration of the file system.

Beyond the possibility of acquiring faster disk drives and controllers, the only real way to
reduce disk I/O contention is to balance the I/O across the entire file system by distributing
files that experience a high frequency of I/O with those that do not.

RAID systems

Redundant Arrays of Inexpensive (or Independent) Disks (RAID) boost performance by
striping data into slices across multiple disks in a disk array. By spreading data across multiple
disks, all disks share the burden of I/O operations, thus reducing the chance of a bottleneck
occurring on one disk. RAID’s performance increases as you add disks to the array. The
operating system and database will see only one volume, a logical representation of the entire
disk array.

In a simple configuration, you could create a single disk array of four disks and configure one
large data file within that RAID array. Your data would be striped across all four disks evenly,
reducing contention. The database’s transaction log should not occupy this same array. This
solution proves very scalable as well—additional performance benefits can be gained by
adding disks to the array until performance increases begin to decline. More complex
configurations would include separate disk arrays for indexes, data tables, and geometry data.

Installing the Informix software

During the installation of the software on the Windows NT/2000 platforms, several datafile
configuration decisions are made. For that reason a complete install procedure for the
Informix software on the Windows NT/2000 platform is provided in Appendix D, ‘Installing
Informix on Windows NT/2000’. Appendix E, This document is not intended to replace the
documentation provided by Informix. They are merely provided here for your convenience. If
you have any questions regarding the installation of the Informix software, please consult the
Informix documentation and, if you are still unable to resolve your problem, contact Informix
technical support.

Chapter 2 Essential Informix configuring and tuning 13

Creating the system dbspaces

In the section ‘Arranging your data’, which follows, you will learn how to create dbspaces to
store your business tables and indexes. Before you start creating these dbspaces, however,
create dbspaces to serve as temporary storage for the transitional functions of the Informix
server. Logical log files, physical log files, and temporary space for sorting should occupy
their own dbspace.

Depending on the available number of disks, try to spread the devices of the dbspaces across
your file system. Try to keep the devices of the physical and logical logs separate. Either the
physical log or the logical log may share the same disk as the root device.

The temporary sorting devices (commonly referred to as temp devices) should be separated
from all other devices, if possible. These temp devices are used heavily during the creation of
the R-Tree index after data loading.

Therefore, it is a good rule of thumb to start with at least 200 MB of temporary storage
(spread across at least two sorting devices) to handle the loading of large datasets and their
associated R-Tree index building.

You may need to monitor the temporary space usage during the loading of large datasets to
make sure Informix does not run out and produce an error. If this happened, it would typically
leave the ArcSDE table in “load-only mode”.

Device Files

To create a device file on a Windows NT/2000 platforms, use Explore to locate the directory
in which you want to create the device file and create a new text file. Rename the text file to
your device filename.

Create the device for the physical logs.
phydbs.000

Create two devices for the logical logs.
log1dbs.000
log2dbs.000
log3dbs.000

Create two devices for sorting.
temp1dbs.000
temp2dbs.000

14 ArcSDE Configuration and Tuning Guide for Informix

For example, to create the physical log device file example above, right mouse click on My
Computer and select Explore from the list. Locate the proper directory. If the directory does
not exist, create it by selecting File>New>Folder from Explore. Rename the folder with a
right mouse click. While the cursor is on the folder, select Rename from the list and rename
the folder (or directory).

Once you have moved to the correct directory, select File>New>Text Document from the
Explore menu. Rename the document with a right mouse click while the cursor is on the
document by selecting Rename from the list. It is common for Informix device files to have a
.000 initial extension to distinguish them from other types of Windows NT/2000 files.

Make sure that these device files have read permissions for all and full control for informix
administrator account.

The Informix onspaces utility manages dbspaces. Use it to create the dbspaces and assign
them to the devices that you have just set up. The onspaces syntax varies slightly depending
on the kind of dbspace it is operating on. However, the basic syntax for creating the system
dbspaces is:
onspaces -c -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

onspaces -c -t -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

The -t flag is included to indicate that the dbspace will be used for sorting and other temporary
activities.

When creating a dbspace on a Windows NT/2000 platform, only the style of the pathname
changes. Start the onspaces and other Informix utilities from the INFORMIX-Universal
Server Command Line Utilities. To invoke this special MS–DOS® command line entry
window, press Start>Programs>INFORMIX®-Universal Server>Command Line Utilities.
The
MS–DOS window runs the %INFORMIXDIR%\setenv.cmd Informix system environment
file. If you try to execute the Informix utilities from a regular MS–DOS command window,
you will receive errors unless you set the system environment variables listed in the
%INFORMIXDIR%\setenv.cmd file.
Create the first dbspace for logical logs
onspaces -c -d log1dbs -p D:\informix_data\log1dbs.000 -o 0 -s 125000

Create the second dbspace for the logical logs
onspaces -c -d log2dbs -p E:\informix_data\log2dbs.000 -o 0 -s 125000

Create the third dbspace for the logical logs
onspaces -c -d log3dbs -p E:\informix_data\log3dbs.000 -o 0 -s 125000

Chapter 2 Essential Informix configuring and tuning 15

Create the dbspace for the phydbs
onspaces -c -d phydbs -p C:\informix_data\phydbs.000 -o 0 -s 10000

Create the first temporary dbspace
onspaces -c -t -d temp1dbs -p F:\informix_data\temp1dbs.000 -o 0 -s 150000

Create the second temporary dbspace
onspaces -c -t -d temp2dbs -p G:\informix_data\temp2dbs.000 -o 0 -s 150000

Moving the physical log out of the root dbspace

Moving the physical log out of the root dbspace reduces the I/O contention. Simply change
the PHYDBS parameter in your onconfig file to the dbspace you have just created for
physical logging. In our example the PHYSDBS parameter would be set to phydbs.
PHYSDBS phydbs

Increase the size of the PHYSFILE to use the space allocated to the physical log’s dbspace. In
the example, the phydbs dbspace is 10,000 kilobytes, allowing us to increase the PHYSFILE
to 9000. It cannot be increased to the size of the dbspace because Informix uses a certain
amount of space for overhead.
PHYSFILE 9000

Shut down and restart the Informix server to use the phydbs dbspace for physical logging.

Windows NT/2000 users stop and start the server from the Services panel (see ‘Restarting the
Informix Dynamic Server’ above).

Examine the end of the online.log file. An entry should exist stating that the physical logging

has been changed to the dbspace you specified.
Moving the logical logs out of the root dbspace

For the same reason you moved the physical logs from the root dbspace, you must do the
same for the logical logs. First, make sure the LOGSMAX parameter in the onconfig file is set
high enough.

By default, the installation creates ten logs in the root dbspace on the Windows NT/2000
platforms. To add 3 log files on a Windows NT/2000 platforms, set LOGSMAX to at least
100.

Make sure you create enough logical logs to handle your longest transaction. Typically, long
transactions occur when you create or delete a very large dataset or when you compress a

16 ArcSDE Configuration and Tuning Guide for Informix

geodatabase. You must checkpoint your logical logs by backing them up before you reach the
long transaction high water mark percentage defined by the LTXHWM parameter in your
Informix onconfig file. You should not change either the LTXHWM or LTXEHWM without
the consent of an Informix technical support expert that is familiar with the behavior of the
Informix Spatial DataBlade. If a transaction fails to complete and is rolled back because it
reaches the long transaction high water mark, then you do not have enough logical logs.

To create the new logical logs, first set the server in quiescent mode by issuing the onmode
command with -s flag Remember to execute all Informix utilities from the INFORMIX-
Dynamic Server command line on the Windows NT/2000 platforms, rather than the normal
DOS command window.
C:\Informix> onmode -s

To add logical log files to each of the dbspaces created for them, use the Informix onparams
utility. When you add the log files, make sure you alternate between at least two dbspaces.
This ensures that while one log file is being flushed from one disk drive another can be written
to on another disk drive.
C:\Informix> onparams -a -d log1dbs
C:\Informix> onparams -a -d log2dbs
C:\Informix> onparams -a -d log3dbs

Activate the new logical logs by performing a zero-level archive with the Informix ontape
utility.
C:\Informix> ontape -s

Now you can delete the original ten logical logs that reside on the root dbspace. First, you
must determine if one of the first ten logical logs is the current one. Use the onstat -l command
to generate a list of the logical logs.
C:\Informix> onstat -l

The logical log is current if its ‘flags’ column contains a C. Find this logical log and note its
number. If the number is between one and ten on a Windows NT/2000 platforms, you must
advance the log with the onmode -l utility.
C:\Informix> onmode -l

Repeat the onstat -l followed by the onmode -l utility until a logical log, with a number greater
than ten for Windows NT/2000, becomes current.

Then use the onparams -d utility to drop the logical logs in the root dbspace.
C:\Informix> onparams -d -l 1 -y
C:\Informix> onparams -d -l 2 -y
C:\Informix> onparams -d -l 3 -y
C:\Informix> onparams -d -l 4 -y

Chapter 2 Essential Informix configuring and tuning 17

C:\Informix> onparams -d -l 5 -y
C:\Informix> onparams -d -l 6 -y
C:\Informix> onparams -d -l 7 -y
C:\Informix> onparams -d -l 8 -y
C:\Informix> onparams -d -l 9 -y
C:\Informix> onparams -d -l 10 -y

Use the ontape -s utility command to archive the change. The output of the onstat -l utility
should list only those log files that were added to the log1db, log2dbs and log3dbs spaces. The
output of the onstat -l output from a Windows NT/2000 platforms should begin at 11.

Put the server back in online mode with the onmode -m utility.
C:\Informix> onmode –m

Setting up the temporary dbspace

By default, Informix uses the root dbspace when it needs temporary space for sorting. The
creation of a large index (such as rtree-index) can fill the root dbspace, resulting in a server
crash. Or, in the case of loading data using the ArcCatalog product, the creation of the rtree
index (the last step in loading data) will fail and the layer loaded will remain in load-only
mode.

It is better then to control the location of the temporary space by using separate dbspaces and
adding chunks of space as necessary. Set the DBSPACETEMP parameter in the onconfig file
to the temporary dbspaces created earlier. Remember to use at least 2 dbspaces totaling 300
MB as a starting point. Then add chunks accordingly, making sure that these chunks span
different disks whenever possible.
DBSPACETEMP temp1dbs,temp2dbs

Restart the Informix server to set the temporary space in the server. On the Windows NT/2000
platforms, the Informix server is restarted from the Services panel (see ‘Restarting the
Informix Dynamic Server’ above).

Examine the online.log file to ensure that the temporary space is set. You should see an entry
stating that the temporary files have been relocated from the root dbspace to the dbspaces you
assigned to the DBSPACETEMP parameter.

Creating the default smart large object dbspace

The Spatial DataBlade module writes the compressed geometry to the smart large object
whenever it is larger than 929 bytes. For this reason a default smart large object space or
sbspace must exist.

18 ArcSDE Configuration and Tuning Guide for Informix

On the Windows NT/2000 platforms the default sbspace and syssbspace (found in the
onconfig file)are created during the installation of the server. You can add additional chunks
of sbspace to this default sbspace or create additional sbspaces to access through the
%SDEHOME%\etc\dbtune.sde file.

Allocating enough metadata within a smart large object sbspace

Make sure to also include enough space when creating both the sbspace and syssbspace for
system metadata. Informix automatically creates the system metadata when you create a smart
large object sbspace; however, it is usually a small percentage of the total sbspace space.

If the smart large object sbspace uses all the space allocated to the metadata, Informix returns
an “out of smart large object dbspace” error after trying to store data even though plenty of
smart large object sbspace exists.

Large datasets can require large amounts of smart large object metadata sbspace. Define the
amount of smart large object sbspace to allocate to the metadata with the -Ms option of the
following onspaces command when you create the sbspace.
C:\Informix> onspaces –c –S sblobdbs –g 1 –p d:\ifmxdata\mailia\sblobdbs.000 –
o 0 –s 350000 –Ms 50000

In this example, Informix allocates 50 MB of the total 350 MB of smart large object sbspace
to metadata in the smart large object dbspace sblobdbs. You can also allocate space to the
metadata when you add a chunk to a sbspace:
C:\Informix> onspaces –a sblobdbs –p d:\ifmxdata\mailia\sblob1dbs.000 –o 0 –s
350000 –Ms 50000

You can allocate all of the space to metadata when you add a chunk to smart large object
sbspaces by specifying the same values for the –Ms and –s flags:
C:\Informix> onspaces –a sblobdbs –p d:\ifmxdata\mailia\sblob1dbs.000 –o 0 –s
350000 –Ms 350000

The metadata portion of a smart large object can be monitored with the “dbstat –d” command.
Check the metadata available space for each smart large object sbspace.

Using smart large object sbspaces

In order to avoid the possibility of running out of default smart large object sbspace to hold
both spatial column data or annotation column data, create separate smart large object
sbspaces. Keep the default sbspace and syssbspace small for Informix system use only. You
should make the sbspace and syssbspace separate smart large object sbspaces, but it is not
necessary.

Chapter 2 Essential Informix configuring and tuning 19

Smart large object sbspaces can be assigned to spatial columns of annotation columns using
the DBTUNE table S_STORAGE parameter. For more information on the S_STORAGE
parameter, see chapter 3, ‘Configuring DBTUNE storage parameters’.

Smart large object sbpace at ArcSDE 8.3

At Spatial Database Engine™ (SDE®) 3.0.2.2 for Informix, the SDE large binary datatype
SE_BLOB_TYPE was stored as the Informix datatype BYTE.

For ArcSDE 8.3 for Informix, the ArcSDE large binary datatype is stored as the Informix
BLOB data type.

Since BLOB is stored in the smart large object BLOB spaces, you need to specify the default
smart large object BLOB space in the ONCONFIG file and make sure it is large enough to
hold your large binary data. Make sure you allocate enough space for the sbspace metadata.

The preferred alternative to using the default smart large object sbspace is to create separate
smart large object sbspaces and control the placement of spatial columns and annotation
columns into these smart BLOBs using the storage parameters of the DBTUNE table. See
Chapter 3, ‘Configuring DBTUNE storage parameters’, for details.

Arranging your data
Proper arrangement of tables and indexes on the file system will help to minimize disk I/O
bottlenecks. Placement of these data objects requires that you estimate their size and create the
dbspaces they will be stored in. You add the dbspaces names along with a list of other data
object storage parameters to a DBTUNE table configuration keyword. To learn more about
the storage parameters of the DBTUNE table, see chapter 3, ‘Configuring DBTUNE storage
parameters’. The ArcSDE server uses the parameters when it creates the data objects with the
ArcSDE administration commands.

Creating the dbspaces and sbspaces

A dbspace is a logical unit of storage that Informix uses to store tables and indexes. An
sbspace is a logical unit of storage designed specifically to store smart large objects. Both are
created and maintained by the onspaces command. Both may have one or more physical units
of storage assigned to them. The physical units of storage are called chunks. Chunks may be
either raw devices or cooked files.

20 ArcSDE Configuration and Tuning Guide for Informix

Raw devices are not recommended on Windows NT platforms because the advantage is
negligible from an ease-of-use standpoint. Consult the INFORMIX-Dynamic Server
Administrator’s Guide for advice on when to use a raw device or a cooked file.

The size and placement of dbspaces and sbspaces depend on the tables and indexes stored
within them. Here are some basic guidelines to help determine the size and placement of your
tables, indexes, and the smart large objects. Given the number and size of the disk drives
available on your system, you may not be able to follow these guidelines to the letter, but
follow them as best you can, keeping in mind that the goal is to minimize disk I/O contention.

Separate indexes onto a different disk drive from the tables they index

If the Informix optimizer determines that an index will speed up the execution of a query, it
will read pages of the index into memory, search the pages for a match, and read matching
table records from disk into memory. Storing the index and table on the same disk forces the
disk head to unproductively travel back and forth between the index and the table. Arranging
the tables and indexes on separate disks allows multiple disk heads to simultaneously read
from the index and the table—reducing disk head travel and seek time.

Separate smart large objects from their associated spatial tables

Spatial data too large to be stored inline with other table data is written to the designated smart
large object. Just like indexes, smart large object sbspaces should be stored on a disk separate
from both the table and the indexes.

Place high-use tables in the middle disk drive partitions to minimize disk head
movement

Placing high-use tables in the middle partitions of a disk drive reduces disk head travel. Based
on the law of averages, arranging data so that the disk head spends most of its time in the
middle partition reduces travel. Consult your operating system configuration manual for
directions on partitioning your disk drives. Allocate a single chunk to the partition and assign
the dbspace of the high-use tables to it.

Separate large high-use tables on different disk drives

Balance disk I/O by spreading large high-use tables throughout the file system. Discuss the
application model with the designers to determine which tables will be accessed most.
Arrange these tables on separate disks to ensure equal employment of disk heads and
controllers.

Chapter 2 Essential Informix configuring and tuning 21

Group smaller tables together into dbspaces by usage

Creating a separate dbspace for each table in your database is unrealistic. Each dbspace has an
associated overhead cost, and it’s cumbersome to manage a large number of dbspaces. Group
smaller tables together into a single dbspace. You should also group the related indexes into
another dbspace so they may be placed on a separate disk drive.

Grouping the smaller tables by usage into separate dbspaces allows you to place the high-use
smaller tables into the middle partitions.

Optimize extent sizes

Estimating the size of your tables and indexes allows you to allocate the initial extent to
contain the entire data object. For data objects grouped together into the same dbspace this
prevents their extents from becoming interleaved. Interleaved extents can reduce performance
if the disk head has to seek over the extents of other tables.

Assign individual dbspaces to large tables

Large tables should have their own dbspaces. This allows you to move these tables easily
throughout the file system. Some tables may be so large that the dbspace assigned to them
requires more than one chunk. If so, it’s a good idea to separate the chunks onto different disk
drives and separate controllers if possible. Doing so allows multiple access to data of the same
table and reduces overall seek time.

Using onspaces to create dbspaces and sbspaces

The Informix onspaces command creates and maintains dbspaces and sbspaces. Run the
onspaces command as the ‘informix’ user.

Dbspaces

Dbspaces are created with the onspaces command using the following basic syntax:
onspaces -c -d <dbspace name> -p <pathname> -o <offset> \
 -s <size in kilobytes>

The dbspace name must be unique within the database. The pathname specifies the location of
either a raw device or a cooked file. If it is a cooked file, the file must exist, and the ‘informix’
user and group must have read and write permissions to the file. On Windows NT/2000
platforms, use Explore to create an empty text file in the appropriate directory.

22 ArcSDE Configuration and Tuning Guide for Informix

In this example, a cooked file d:\Ifmxdata\mailia\roadsdbs1.000 was created and its
permissions are set to read and write access for the ‘informix’ user and group. The onspaces
command creates the roadsdbs dbspace and allocates 50,000 kilobytes to the
d:\Ifmxdata\mailia\roadsdbs1.000 for its initial chunk.
C:\Informix> onspaces -c -d roadsdbs -p d:\Ifmxdata\mailia\roadsdbs1.000 -o 0
-s 50000

Additional chunks may be added to a dbspace with
C:\Informix> onspaces -a <dbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the 50,000-KB chunk d:\Ifmxdata\mailia\roadsdbs2.000 is added to the
dbspace roadsdbs2.
C:\Informix> onspaces -a roadsdbs -p d:\Ifmxdata\mailia\roadsdbs2.000 -o 0 -s
50000

Sbspaces

Smart large object spaces are created in the same fashion as dbspaces. The -S flag directs the
onspaces command to create a smart large object space instead of a regular dbspace. The basic
syntax for creating a smart large object space is:
C:\Informix> onspaces -c -S <sbspace name> -p <pathname> -o <offset> -s <size
in kilobytes>

In this example the sbspace roadsblob is created with the 10,000 KB initial chunk
d:\Ifmxdata\mailia\roadsblobdbs1.000.
C:\Informix> onspaces -c -S roadsblob -g 1 -p
d:\Ifmxdata\mailia\roadsblobdbs1.000 -o 0 -s 10000

You can add additional chunks to the smart large object space with the following onspaces
syntax. You will notice that the -S flag is not required when adding a chunk.
C:\Informix> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the d:\Ifmxdata\mailia\roadsblobs2.000 -o 0 -s 10000 chunk is added to the
smart large object space roadsblob.
C:\Informix> onspaces -a roadsblob -p d:\Ifmxdata\mailia\roadsblobs2.000 -o 0
-s 10000

Note: The logging of smart large objects is independent of the rest of the Informix database.
By default, smart large objects are not logged.

Chapter 2 Essential Informix configuring and tuning 23

If users are going to load data for read-only purposes, there is no need to have smart BLOB
logging enabled. Simply take a level 0 archive after loading the data and recoverability is
ensured.

However, for data that is manipulated additional steps must be taken to ensure recoverability.
Database and smart BLOB logging must be enabled following the initial data load. After you
enable database and smart BLOB logging, a level 0 archive of the instance must be taken to
ensure recoverability.

To turn logging on add -Df LOGGING=ON to the onspaces command that creates the
sbspace.

C:\Informix> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes> -Df LOGGING=ON

The logging mode of an sbspace and the smart BLOBs it contains can be changed with
onspaces:

C:\Informix> onspaces -ch <sbspace name> -Df "LOGGING=<logging mode>"

24 ArcSDE Configuration and Tuning Guide for Informix

UNIX Systems

Updating the onconfig file
Informix maintains its configuration parameters in the onconfig file located in the
$INFORMIXDIR/etc on UNIX. The parameters of this file control the server's memory use,
the size and number of log files, temporary space, the location of the error logs, and much
more. The onconfig file is read whenever the Informix server is started. So changes to the
parameter require that you restart the server.

Naming the onconfig file

The standard onconfig file, onconfig.std, contains the default settings of the Informix
parameters. Do not edit this file; instead, preserve it as a record of the default settings.

On UNIX systems, manually copy the onconfig.std file to a new file name such as
onconfig.sde.

For the remainder of this document, when the onconfig file is mentioned, we are referring to
the $INFORMIXDIR/etc/<your copied file> on UNIX.

On UNIX systems, add the ONCONFIG system variable to the INFORMIX .cshrc or .profile
file. For example, if you have named your onconfig file onconfig.sde, you would set the
ONCONFIG variable to that.
setenv ONCONFIG onconfig.sde

Some important onconfig parameters

The following is a list of some of the more important onconfig parameters whose default
values you should change to improve the performance of your Informix server when using it
with ArcSDE.

BUFFERS

The BUFFERS parameter file controls the size of the regular buffers, the area of memory in
which Informix stores the most recently used page of data. The first reader reads the page
from disk, while subsequent readers read the page from the regular buffer until it is paged out

Chapter 2 Essential Informix configuring and tuning 25

of memory. A page will be paged out of the regular buffer if it is has been unused over a
period of time and the memory is needed to hold other pages that are being used.

Increase the number of data buffers to 2,000 or 25 percent of your physical RAM, whichever
is greater. BUFFERS is specified in pages. If your pages are 2 kilobytes (page size can be
determined with the Informix command onstat -b) and your physical RAM is 256 MB,
BUFFERS would be calculated as follows:
BUFFERS = <physical RAM converted to kilobytes> * 25% /
 <page size in kilobytes>
 = (256 * 1024) * 0.25 / 2
 = 32768

BUFFERS 32768

LOGSIZE

The LOGSIZE parameter controls the default size of the logical logs. The size of the logical
logs can be specified when they are created with the INFORMIX onparams utility. However,
if the size is not specified, LOGSIZE is used.

Set the logical log file size to 100,000 kilobytes. When the logical logs are moved out of the
rootdbs, they will be created with this size.
LOGSIZE 100000

LOG_BACKUP_MODE

The LOG_BACKUP_MODE parameter specifiesthe mode in which logical logs are backed
up. This mode can be either continuous or manual. Continuous mode will allow you to
automatically do logical log backups when required.

LOGSMAX

The LOGSMAX parameter specifies the maximum number of logical logs that may be
created. Increase the LOGSMAX parameter so that you can create new logical logs in order to
move them out of the rootdbs.

Set the maximum number of logical log files to 100.
LOGSMAX 100

26 ArcSDE Configuration and Tuning Guide for Informix

CLEANERS

CLEANERS specifies the page cleaner threads started by the INFORMIX instance. Page
cleaner threads periodically wake up and perform background writes of batches of dirty pages
held in the regular buffers to disk.

Set the number of page cleaners to 6 or the number of disks that contain frequently accessed
data, whichever is higher.
CLEANERS 6

STACKSIZE

STACKSIZE specifies the amount of stack allocated to the INFORMIX instance. Although
for most applications Informix recommends that this parameter be left at its default value of
32 (kilobytes), for ArcSDE it is very important to increase the size of this parameter to 64
(kilobytes) in support of the Informix Spatial DataBlade user-defined datatypes (UDTs)
accessed by ArcSDE.

Increase the initial stack size of each thread to 64 kilobytes. Set the STACKSIZE parameter to
64.
STACKSIZE 64

RA_PAGES

This read-ahead parameter sets the number of data and index pages that are cached in the
regular buffers whenever a sequential scan of one or more tables occurs.

Set the read-ahead pages to 125.
RA_PAGES 125

RA_THRESHOLD

RA_THRESHOLD, the read-ahead threshold, specifies the number of remaining unread
pages that in the regular buffers triggers another call to read in more pages from disk.

Set the number of unprocessed pages that trigger another read ahead to 85.
RA_THRESHOLD 85

DUMPDIR

The DUMPDIR parameter specifies the location of the dump directory where error log files
are written in the event of an assertion failure.

Chapter 2 Essential Informix configuring and tuning 27

Leave the dump directory set to tmp if you have adequate space there. However, you can
create a tmp directory under the Informix installation directory and set DUMPDIR to that.
Should an assert failure occur, the diagnostic files are one directory below the online.log file
that references them.
DUMPDIR /usr/informix/tmp /* UNIX

RESIDENT

The RESIDENT parameter specifies which portion of the INFORMIX instances shared
memory can be swapped out of the operating system's shared memory. Allowing as many
portions of the instance’s shared memory to remain resident eliminates a large amount of I/O
and context switching of the instance’s memory structures.

Setting the RESIDENT parameter to -1 keeps as many of the instance’s memory structures as
possible resident given the amount of physical memory and system resources available.
RESIDENT –1

MULTIPROCESSOR

The MULTIPROCESSOR parameter specifies whether the Informix Server machine has one
or multiple processors in which to use.

Set to 0 if the Informix Server machine has only one processor and set to 1 if there are
multiple processors.

System parameters that must be adjusted prior to initialization

ROOTPATH

The ROOTPATH parameter specifies the initial chunk of the root dbspace. The default setting
/dev/online_root causes the initialization of the INFORMIX instance to fail unless you have
actually created the device beforehand. Change the default setting from /dev/online_root path
to the device of rootdbs space you have created. For example, after creating the device with
the UNIX touch command as the informix user and setting its permissions to 660 with the
UNIX chmod command, set the ROOTPATH to the full pathname of the root dbspace chunk
file. If you are using a raw device, set the ROOTPATH to the full pathname of the link to the
raw device.
ROOTPATH /disk1/informix_data/rootdbs

28 ArcSDE Configuration and Tuning Guide for Informix

MSGPATH

The MSGPATH parameter specifies the full pathname to the message log file that the
database server will write status and diagnostic messages to.

Update MSGPATH to reflect the location of your Informix installation.
MSGPATH /disk1/informix/online.log

ALARMPROGRAM

The ALARMPROGRAM parameter specifies the full path of the script that will be executed
when a log full event is issued. Set the parameter to log_full.sh to have the logical logs backed
up automatically and to no_log.sh if you intend to back up the logs manually.

Update ALARMPROGRAM to reflect the location of your Informix installation.
ALARMPROGRAM /disk1/informix/etc/log_full.sh

TAPEDEV

The TAPEDEV parameter specifies the device used to back up the dbspaces. During the
loading phase of your database, it is often a good idea to set this parameter to the /dev/null
device. After the data is loaded set the parameter to the proper tape device. The rationale
behind this is that the data is already backed up by the data source that you are loading it from.
Therefore, if a dbspace is lost to a disk failure, the data can be restored from the original data
source. Once the database is loaded, you can set it to your tape device.
TAPEDEV /dev/null

LTAPEDEV

The LTAPEDEV parameter specifies the tape device that the ONTAPE utility backs up the
logical log files to.

Set this to the /dev/null device. Once the server is up, you can set it to your tape device if you
intend to archive the log files.
LTAPEDEV /dev/null

DBSERVERNAME

The DBSERVERNAME parameter specifies the unique name of your database server. The
dbservername is assigned a communications protocol in the sqlhosts file. Typically the
dbservername is set to the database server name that is associated with the shared memory
communications protocol. The DBSERVERALIASES parameter normally holds the database
server name associated with the TCP/IP communications protocol.

Chapter 2 Essential Informix configuring and tuning 29

Set this value to the lowercase name of your shared memory server.
DBSERVERNAME gis

DBSERVERALIASES

Set this value to the lowercase name of your TCP/IP server.
DBSERVERALIASES gis_net

NETTYPE

Set separate NETTYPE parameters to configure the poll threads for the shared memory and
TCP/IP network protocols. The settings below allow 20 local connections and 200 remote
connections. The configuration of the NETTYPE parameter is discussed in detail in the
‘Network virtual processors’ section that follows. Set the NETTYPE parameters to the
expected number of local and remote connections, as in the example for Solaris 2 below:

Solaris 2
NETTYPE ipcshm,1,20,CPU
NETTYPE tlitcp,2,100,NET

Following is the NETTYPE parameters for UNIX configurations:

HP
NETTYPE ipcstr,1,20,CPU
NETTYPE soctcp,2,100,NET

IBM
NETTYPE ipcshm,1,20,CPU
NETTYPE soctcp,2,100,NET

Restarting the INFORMIX server

To restart the INFORMIX server on the UNIX system first shut the server down by issuing
the onmode -ky command at the UNIX prompt while logged in as the informix user.
informix> onmode -ky

Then restart the server with the oninit command.
informix> oninit

30 ArcSDE Configuration and Tuning Guide for Informix

Tuning disk I/O contention
Disk I/O contention can prove to be one of the more difficult challenges for a DBA to
overcome. Unlike memory and CPU issues that can be solved by acquiring more of these
resources once all tuning procedures have been exhausted, the reduction of disk I/O
contention must be solved through proper planning and administration of the file system.

Beyond the possibility of acquiring faster disk drives and controllers, the only real way to
reduce disk I/O contention is to balance the I/O across the entire file system by distributing
files that experience a high frequency of I/O with those that do not.

RAID systems

Redundant Arrays of Inexpensive (or Independent) Disks (RAID) boost performance by
striping data into slices across multiple disks in a disk array. By spreading data across multiple
disks, all disks share the burden of I/O operations, thus reducing the chance of a bottleneck
occurring on one disk. RAID’s performance increases as you add disks to the array. The
operating system and database will see only one volume, a logical representation of the entire
disk array.

In a simple configuration, you could create a single disk array of four disks and configure one
large data file within that RAID array. Your data would be striped across all four disks evenly,
reducing contention. The database’s transaction log should not occupy this same array. This
solution proves very scalable as well—additional performance benefits can be gained by
adding disks to the array until performance increases begin to decline. More complex
configurations would include separate disk arrays for indexes, data tables, and geometry data.

Installing the Informix software

‘Installing Informix on UNIX’, provides instruction for installing Informix on UNIX systems.
This document is not intended to replace the documentation provided by Informix. They are
merely provided here for your convenience. If you have any questions regarding the
installation of the Informix software, please consult the Informix documentation and, if you
are still unable to resolve your problem, contact Informix technical support.

Creating the system dbspaces

In the section ‘Arranging your data’, which follows, you will learn how to create dbspaces to
store your business tables and indexes. Before you start creating these dbspaces, however,
create dbspaces to serve as temporary storage for the transitional functions of the Informix

Chapter 2 Essential Informix configuring and tuning 31

server. Logical log files, physical log files, and temporary space for sorting should occupy
their own dbspace.

Depending on the available number of disks, try to spread the devices of the dbspaces across
your file system. Try to keep the devices of the physical and logical logs separate. Either the
physical log or the logical log may share the same disk as the root device.

The temporary sorting devices (commonly referred to as temp devices) should be separated
from all other devices, if possible. These temp devices are used heavily during the creation of
the R-Tree index after data loading.

Therefore, it is a good rule of thumb to start with at least 300 MB of temporary storage
(spread across at least two sorting devices) to handle the loading of large datasets and their
associated R-Tree index building.

You may need to monitor the temporary space usage during the loading of large datasets to
make sure Informix does not run out and produce an error. If this happened, it would typically
leave the ArcSDE table in “load-only mode”.

Here is a UNIX example of creating the physical log, logical logs, and temporary dbspace
devices. When these devices are first created, they are empty and occupy zero space on the
disk. After the dbspaces are assigned to them by the onspaces command, the devices
immediately grow to the size allocated by the dbspace.

Note: These examples use cooked devices, which do not provide the best performance on a
UNIX system. For best performance you should create all dbspaces on a UNIX raw device.
Consult the INFORMIX-Universal Server Administrator’s Guide for advice on creating
dbspaces on raw devices.

Create the device for the physical logs.
gis> touch /gis1/informix_data/phydbs
gis> chmod 660 /gis1/informix_data/phydbs

Create two devices for the logical logs.
gis> touch /gis2/informix_data/log1dbs
gis> chmod 660 /gis2/informix_data/log1dbs
gis> touch /gis3/informix_data/log2dbs
gis> chmod 660 /gis3/informix_data/log2dbs
gis> touch /gis3/informix_data/log3dbs
gis> chmod 660 /gis3/informix_data/log3dbs

Create two devices for sorting.
gis> touch /gis4/informix_data/temp1dbs

32 ArcSDE Configuration and Tuning Guide for Informix

gis> chmod 660 /gis4/informix_data/temp1dbs
gis> touch /gis5/informix_data/temp2dbs
gis> chmod 660 /gis5/informix_data/temp2dbs

The Informix onspaces utility manages dbspaces. Use it to create the dbspaces and assign
them to the devices that you have just set up. The onspaces syntax varies slightly depending
on the kind of dbspace it is operating on. However, the basic syntax for creating the system
dbspaces is:
onspaces -c -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

onspaces -c -t -d <dbspace_name> -p <path to device> -o <offset> \
 -s <size in kilobytes>

The -t flag is included to indicate that the dbspace will be used for sorting and other temporary
activities.

In the UNIX example below, dbspaces are created for the logical logs, physical log, and
temporary space.
Create the first dbspace for logical logs
onspaces -c -d log1dbs -p /gis2/informix_data/log1dbs -o 0 -s 125000

Create the second dbspace for the logical logs
onspaces -c -d log2dbs -p /gis3/informix_data/log2dbs -o 0 -s 125000

Create the third dbspace for the logical logs
onspaces -c -d log3dbs -p /gis3/informix_data/log3dbs -o 0 -s 125000

Create the dbspace for the phydbs
onspaces -c -d phydbs -p /gis1/informix_data/phydbs -o 0 -s 10000

Create the first temporary dbspace
onspaces -c -t -d temp1dbs -p /gis4/informix_data/temp1dbs -o 0 -s 150000

Create the second temporary dbspace
onspaces -c -t -d temp2dbs -p /gis5/informix_data/temp2dbs -o 0 -s 150000

Moving the physical log out of the root dbspace

Moving the physical log out of the root dbspace reduces the I/O contention. Simply change
the PHYDBS parameter in your onconfig file to the dbspace you have just created for
physical logging. In our example the PHYSDBS parameter would be set to phydbs.
PHYSDBS phydbs

Increase the size of the PHYSFILE to use the space allocated to the physical log’s dbspace. In
the example, the phydbs dbspace is 10,000 kilobytes, allowing us to increase the PHYSFILE
to 9000. It cannot be increased to the size of the dbspace because Informix uses a certain
amount of space for overhead.

Chapter 2 Essential Informix configuring and tuning 33

PHYSFILE 9000

Shut down and restart the Informix server to use the phydbs dbspace for physical logging.

UNIX users use the onmode command to shut down the server and the oninit command to
start it.
gis> onmode -ky

gis> oninit

Moving the logical logs out of the root dbspace

For the same reason you moved the physical logs from the root dbspace, you must do the
same for the logical logs. First, make sure the LOGSMAX parameter in the onconfig file is set
high enough.

By default, the installation creates six logs in the root dbspace on a UNIX platform. To add 20
log files to an Informix server on a UNIX platform, LOGSMAX must be set to at least 26.

Make sure you create enough logical logs to handle your longest transaction. Typically, long
transactions occur when you create or delete a very large dataset or when you compress a
geodatabase. You must checkpoint your logical logs by backing them up before you reach the
long transaction high water mark percentage defined by the LTXHWM parameter in your
Informix onconfig file. You should not change either the LTXHWM or LTXEHWM without
the consent of an Informix technical support expert that is familiar with the behavior of the
Informix Spatial DataBlade. If a transaction fails to complete and is rolled back because it
reaches the long transaction high water mark, then you do not have enough logical logs.

To create the new logical logs, first set the server in quiescent mode by issuing the onmode
command with -s flag.
gis> onmode -s

To add logical log files to each of the dbspaces created for them, use the Informix onparams
utility. When you add the log files, make sure you alternate between at least two dbspaces.
This ensures that while one log file is being flushed from one disk drive another can be written
to on another disk drive.
gis> onparams -a -d log1dbs
gis> onparams -a -d log2dbs
gis> onparams -a -d log3dbs

Activate the new logical logs by performing a zero-level archive with the Informix ontape
utility.
gis> ontape -s

34 ArcSDE Configuration and Tuning Guide for Informix

Now you can delete the original six logical logs that reside on the root dbspace. First, you
must determine if one of the first six logical logs is the current one. Use the onstat -l command
to generate a list of the logical logs.
gis> onstat -l

The logical log is current if its ‘flags’ column contains a C. Find this logical log and note its
number. If the number is between one and six on a UNIX platform, you must advance the log
with the onmode -l utility.
gis> onmode -l

Repeat the onstat -l followed by the onmode -l utility until a logical log, with a number greater
than six for a UNIX platform, becomes current.

Then use the onparams -d utility to drop the logical logs in the root dbspace.
gis> onparams -d -l 1 -y
gis> onparams -d -l 2 -y
gis> onparams -d -l 3 -y
gis> onparams -d -l 4 -y
gis> onparams -d -l 5 -y
gis> onparams -d -l 6 -y

Use the ontape -s utility command to archive the change. The output of the onstat -l utility
should list only those log files that were added to the log1dbs, log2dbs, and log3dbs spaces.
The output of the onstat -l on the UNIX platform should begin with log file number 7.

Put the server back in online mode with the onmode -m utility.
gis> onmode –m

Setting up the temporary dbspace

By default, Informix uses the root dbspace when it needs temporary space for sorting. The
creation of a large index (such as rtree-index) can fill the root dbspace, resulting in a server
crash. Or, in the case of loading data using the ArcCatalog product, the creation of the rtree
index (the last step in loading data) will fail and the layer loaded will remain in load-only
mode.

It is better then to control the location of the temporary space by using separate dbspaces and
adding chunks of space as necessary. Set the DBSPACETEMP parameter in the onconfig file
to the temporary dbspaces created earlier. Remember to use at least 2 dbspaces totaling 300
MB as a starting point. Then add chunks accordingly, making sure that these chunks span
different disks whenever possible.
DBSPACETEMP temp1dbs,temp2dbs

Chapter 2 Essential Informix configuring and tuning 35

Restart the Informix server to set the temporary space in the server. On UNIX platforms the
onmode -ky command shuts down the server and the oninit command starts it again.
gis> onmode -ky
gis> oninit

Examine the online.log file to ensure that the temporary space is set. You should see an entry
stating that the temporary files have been relocated from the root dbspace to the dbspaces you
assigned to the DBSPACETEMP parameter.

Creating the default smart large object dbspace

The Spatial DataBlade module writes the compressed geometry to the smart large object
whenever it is larger than 929 bytes. For this reason a default smart large object space or
sbspace must exist.

On the UNIX platform an sbspace must be created. Create the device for the sbspace. On a
UNIX platform this is done with the touch and chmod commands.
gis> touch /gis6/informix_data/sblobdbs
gis> chmod 660 /gis6/informix_data/sblobdbs

Use the onspaces utility to create the sbspace. The -S flag directs the onspaces utility to create
an sbspace to store a smart large object. Set the -g flag to 1.
onspaces -c -S sblobdbs -g 1 -p /gis6/informix_data/sblobdbs -o 0 -s 300000

Set the default smart large object space parameter SBSPACENAME in the onconfig file to
the sbspace you created.

Restart the Informix server to set the default sbspace by invoking the onmode -ky utility to
shut down the server followed by the oninit utility to start it again.

Check the online.log file; look for a message stating that the default smart large object space
has been changed to the sbspace you specified in the onconfig file.

Allocating enough metadata within a smart large object sbspace

Make sure to also include enough space when creating both the sbspace and syssbspace for
system metadata. Informix automatically creates the system metadata when you create a smart
large object sbspace; however, it is usually a small percentage of the total sbspace space.

If the smart large object sbspace uses all the space allocated to the metadata, Informix returns
an “out of smart large object dbspace” error after trying to store data even though plenty of
smart large object sbspace exists.

36 ArcSDE Configuration and Tuning Guide for Informix

Large datasets can require large amounts of smart large object metadata sbspace. Define the
amount of smart large object sbspace to allocate to the metadata with the -Ms option of the
following onspaces command when you create the sbspace.
gis> onspaces –c –S sblobdbs –g 1 –p /gis1/ifmxdata/mailia/sblobdbs –o 0 –s
350000 –Ms 50000

In this example, Informix allocates 50 MB of the total 350 MB of smart large object sbspace
to metadata in the smart large object dbspace sblobdbs. You can also allocate space to the
metadata when you add a chunk to a sbspace:
gis> onspaces –a sblobdbs –p /gis1/ifmxdata/mailia/sblob1dbs –o 0 –s 350000 –
Ms 50000

You can allocate all of the space to metadata when you add a chunk to smart large object
sbspaces by specifying the same values for the –Ms and –s flags:
gis> onspaces –a sblobdbs –p /gis1/ifmxdata/mailia/sblob1dbs –o 0 –s 350000 –
Ms 350000

The metadata portion of a smart large object can be monitored with the “dbstat –d” command.
Check the metadata available space for each smart large object sbspace.

Using smart large object sbspaces

In order to avoid the possibility of running out of default smart large object sbspace to hold
both spatial column data or annotation column data, create separate smart large object
sbspaces. Keep the default sbspace and syssbspace small for Informix system use only. You
should make the sbspace and syssbspace separate smart large object sbspaces, but it is not
necessary.

Smart large object sbspaces can be assigned to spatial columns of annotation columns using
the DBTUNE table S_STORAGE parameter. For more information on the S_STORAGE
parameter, see chapter 3, ‘Configuring DBTUNE storage parameters’.

Smart large object space at ArcSDE 8.3

At Spatial Database Engine™ (SDE®) 3.0.2.2 for Informix, the SDE large binary datatype
SE_BLOB_TYPE was stored as the Informix datatype BYTE.

For ArcSDE 8.3 for Informix, the ArcSDE large binary datatype is stored as the Informix
BLOB data type.

Chapter 2 Essential Informix configuring and tuning 37

Since BLOB is stored in the smart large object BLOB spaces, you need to specify the default
smart large object BLOB space in the ONCONFIG file and make sure it is large enough to
hold your large binary data. Make sure you allocate enough space for the sbspace metadata.

The preferred alternative to using the default smart large object sbspace is to create separate
smart large object sbspaces and control the placement of spatial columns and annotation
columns into these smart BLOBs using the storage parameters of the DBTUNE table. See
Chapter 3, ‘Configuring DBTUNE storage parameters’, for details.

Arranging your data
Proper arrangement of tables and indexes on the file system will help to minimize disk I/O
bottlenecks. Placement of these data objects requires that you estimate their size and create the
dbspaces they will be stored in. You add the dbspaces names along with a list of other data
object storage parameters to a DBTUNE table configuration keyword. To learn more about
the storage parameters of the DBTUNE table, see chapter 3, ‘Configuring DBTUNE storage
parameters’. The ArcSDE server uses the parameters when it creates the data objects with the
ArcSDE administration commands.

Creating the dbspaces and sbspaces

A dbspace is a logical unit of storage that Informix uses to store tables and indexes. An
sbspace is a logical unit of storage designed specifically to store smart large objects. Both are
created and maintained by the onspaces command. Both may have one or more physical units
of storage assigned to them. The physical units of storage are called chunks. Chunks may be
either raw devices or cooked files.

Informix recommends the use of raw devices on UNIX platforms because they provide faster
access and higher reliability in the event of a system failure. On UNIX platforms cooked files
are adequate for demonstrations and storing tables that are infrequently updated.

The size and placement of dbspaces and sbspaces depend on the tables and indexes stored
within them. Here are some basic guidelines to help determine the size and placement of your
tables, indexes, and the smart large objects. Given the number and size of the disk drives
available on your system, you may not be able to follow these guidelines to the letter, but
follow them as best you can, keeping in mind that the goal is to minimize disk I/O contention.

Separate indexes onto a different disk drive from the tables they index

If the Informix optimizer determines that an index will speed up the execution of a query, it
will read pages of the index into memory, search the pages for a match, and read matching

38 ArcSDE Configuration and Tuning Guide for Informix

table records from disk into memory. Storing the index and table on the same disk forces the
disk head to unproductively travel back and forth between the index and the table. Arranging
the tables and indexes on separate disks allows multiple disk heads to simultaneously read
from the index and the table—reducing disk head travel and seek time.

Separate smart large objects from their associated spatial tables

Spatial data too large to be stored inline with other table data is written to the designated smart
large object. Just like indexes, smart large object sbspaces should be stored on a disk separate
from both the table and the indexes.

Place high-use tables in the middle disk drive partitions to minimize disk head
movement

Placing high-use tables in the middle partitions of a disk drive reduces disk head travel. Based
on the law of averages, arranging data so that the disk head spends most of its time in the
middle partition reduces travel. Consult your operating system configuration manual for
directions on partitioning your disk drives. Allocate a single chunk to the partition and assign
the dbspace of the high-use tables to it.

Separate large high-use tables on different disk drives

Balance disk I/O by spreading large high-use tables throughout the file system. Discuss the
application model with the designers to determine which tables will be accessed most.
Arrange these tables on separate disks to ensure equal employment of disk heads and
controllers.

Group smaller tables together into dbspaces by usage

Creating a separate dbspace for each table in your database is unrealistic. Each dbspace has an
associated overhead cost, and it’s cumbersome to manage a large number of dbspaces. Group
smaller tables together into a single dbspace. You should also group the related indexes into
another dbspace so they may be placed on a separate disk drive.

Grouping the smaller tables by usage into separate dbspaces allows you to place the high-use
smaller tables into the middle partitions.

Optimize extent sizes

Estimating the size of your tables and indexes allows you to allocate the initial extent to
contain the entire data object. For data objects grouped together into the same dbspace this

Chapter 2 Essential Informix configuring and tuning 39

prevents their extents from becoming interleaved. Interleaved extents can reduce performance
if the disk head has to seek over the extents of other tables.

Assign individual dbspaces to large tables

Large tables should have their own dbspaces. This allows you to move these tables easily
throughout the file system. Some tables may be so large that the dbspace assigned to them
requires more than one chunk. If so, it’s a good idea to separate the chunks onto different disk
drives and separate controllers if possible. Doing so allows multiple access to data of the same
table and reduces overall seek time.

Using onspaces to create dbspaces and sbspaces

The Informix onspaces command creates and maintains dbspaces and sbspaces. Run the
onspaces command as the ‘informix’ user.

Dbspaces

Dbspaces are created with the onspaces command using the following basic syntax:
gis> onspaces -c -d <dbspace name> -p <pathname> -o <offset> \
 -s <size in kilobytes>

The dbspace name must be unique within the database. The pathname specifies the location of
either a raw device or a cooked file. If it is a cooked file, the file must exist, and the ‘informix’
user and group must have read and write permissions to the file. On UNIX platforms, before
you invoke the onspaces command, use the touch and chmod commands to create the file and
set the permissions.

In this example the UNIX touch command creates the cooked file
/gis6/informix_ck/roadsdbs1 and the chmod command changes its permissions to read and
write access for the ‘informix’ user and group. The onspaces command creates the roadsdbs
dbspace and allocates 50,000 kilobytes to the /gis6/informix_ck/roadsdbs1 for its initial
chunk.
gis> touch /gis6/informix_ck/roadsdbs1
gis> chmod 660 /gis6/informix_ck/roadsdbs1
gis> onspaces -c -d roadsdbs -p /gis6/informix_ck/roadsdbs1 -o 0 -s 50000

Additional chunks may be added to a dbspace with
gis> onspaces -a <dbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the 50,000-KB chunk /gis7/informix_ck/roadsdbs2 is added to the dbspace
roadsdbs2.

40 ArcSDE Configuration and Tuning Guide for Informix

gis> onspaces -a roadsdbs -p /gis7/informix_ck/roadsdbs2 -o 0 -s 50000

Sbspaces

Smart large object spaces are created in the same fashion as dbspaces. The -S flag directs the
onspaces command to create a smart large object space instead of a regular dbspace. The basic
syntax for creating a smart large object space is:
gis> onspaces -c -S <sbspace name> -p <pathname> -o <offset> -s <size in
kilobytes>

In this example the sbspace roadsblob is created with the 10,000 KB initial chunk
/gis8/informix_ck/roadsblobdbs1.
gis> onspaces -c -S roadsblob -g 1 -p /gis8/informix_ck/roadsblobdbs1 -o 0 -s
10000

You can add additional chunks to the smart large object space with the following onspaces
syntax. You will notice that the -S flag is not required when adding a chunk.
onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in kilobytes>

In this example the /gis9/informix_ck/roadsblobs2 -o 0 -s 10000 chunk is added to the smart
large object space roadsblob.
gis> onspaces -a roadsblob -p /gis9/informix_ck/roadsblobs2 -o 0 -s 10000

Note: The logging of smart large objects is independent of the rest of the Informix database.
By default, smart large objects are not logged.

If users are going to load data for read-only purposes, there is no need to have smart BLOB
logging enabled. Simply take a level 0 archive after loading the data and recoverability is
ensured.

However, for data that is manipulated additional steps must be taken to ensure recoverability.
Database and smart BLOB logging must be enabled following the initial data load. After you
enable database and smart BLOB logging, a level 0 archive of the instance must be taken to
ensure recoverability.

To turn logging on add -Df LOGGING=ON to the onspaces command that creates the
sbspace.

gis> onspaces -a <sbspace name> -p <pathname> -o <offset> -s <size in kilobytes> -Df
LOGGING=ON

The logging mode of an sbspace and the smart BLOBs it contains can be changed with
onspaces:

Chapter 2 Essential Informix configuring and tuning 41

gis> onspaces -ch <sbspace name> -Df "LOGGING=<logging mode>"

You must also have your database being logged. It is recommended to use buffered logging.
To change the state of an ArcSDE datbase from no logging to logging, use the following
command:

gis> ontape -B <arcgis_database_name>

42 ArcSDE Configuration and Tuning Guide for Informix

Updating Informix statistics
For optimal performance of feature classes created with ArcSDE, keep the statistics of the
business table up-to-date by frequently updating statistics.

In ArcCatalog, to update the statistics of all of the tables and indexes within a feature dataset
right-click on the feature dataset and click on Analyze. To update the tables and indexes
within a feature class, right-click on the feature and click on Analyze as shown below.

From the command line use the UPDATE_DBMS_STATS operation of the sdetable
administration command to update the statistics for all the tables, and indexes of a feature
class. It is better to use the UPDATE_DBMS_STATS operation rather than individually
analyzing the tables with the Informix SQL UPDATE STATISTICS statement because it
updates the statistics for all the tables of a feature class that require statistics. To have the
UPDATE_DBMS_STATS operation update statistics for all the required tables, do not
specify the -K (schema object) option.
sdetable -o update_dbms_stats -t roads -m high -u av -p mo

Chapter 2 Essential Informix configuring and tuning 43

When the feature class is registered as multiversioned, the ‘adds’ and ‘deletes’ tables are
created to hold the business table’s added and deleted records. The version registration
process automatically updates the statistics for all the required tables at the time it is
registered.

For your dynamic data objects, periodically you must update their statistics so that the
Informix optimizer will continue to choose an optimum execution plan. To save time you can
analyze all of the data objects within a feature dataset in ArcCatalog.

If you decide to update the statistics of all or some of the feature class tables with the Informix
UPDATE STATISTICS statement, you should never compute statistics on a spatial index
table. For more information on the Informix SQL UPDATE STATISTICS statement, refer to
the Informix SQL Reference Manual.

The statistics of a table’s indexes are automatically computed when the statistics on the table
are created, so there is no need to separately generate statistics for the indexes. However, if
you need to do so you can use the sdetable UPDATE_DBMS_STATS operation with the -n
option and the index name.

The example below illustrates how the statistics for the roads_idx index of the roads business
table can be updated.
sdetable -o update_dbms_stats -t roads -K B -n roads_idx -u av -p mo

For more information on updating the statistics on geodatabase objects from ArcCatalog, refer
to Building a Geodatabase.

For more information on the sdetable administration command and the
UPDATE_DBMS_STATS operation, refer to ArcSDE Developer Help.

44 ArcSDE Configuration and Tuning Guide for Informix

Tuning CPU
Many server-class machines are multiprocessors—computers that contain more than one CPU
and parallel process several instructions at a time. The initial configuration of Informix
Dynamic Server defaults to single CPU mode. Doing so ensures that Informix Dynamic
Server starts and runs correctly on single CPU servers. If yours is a multiple CPU server,
configure Informix to take advantage of its parallel processing capabilities.

If you have a single CPU machine, set SINGLE_CPU_VP to 1, set MULTIPROCESSOR
to 0, and keep them that way. Setting SINGLE_CPU_VP to 1 bypasses superfluous mutex
calls required only when running multiple virtual processors. Setting MULTIPROCESSOR
to 0 specifies that locking will be optimized for a single CPU processor.

For multiple processor machines set the SINGLE_CPU_VP to 0 and set
MULTIPROCESSOR to 1. Setting these variables will allow your Informix server to take
advantage of a machine’s parallel processing capabilities.

During its initialization the Informix Dynamic Server creates virtual processors to run the
various threads that service the client applications and other background tasks. Virtual
processors are similar to operating system processes, but they are controlled and manipulated
by the Informix Dynamic Server. Some of the virtual processors are divided into classes,
some of which are tunable. Of particular interest are the CPU, AIO, and network virtual
processor classes.

You may configure the CPU and AIO virtual processors by setting a list of onconfig
parameters that include NUMCPUVPS, AFF_SPROC, AFF_NPROCS, NOAGE, and
NUMAIOVPS. However, Informix recommends that you set the VPCLASS parameter for
each virtual processor class. If you use the VPCLASS method, then you cannot use the other
variables. If Informix detects the presence of both types of parameters in the onconfig file, it
returns an error and will not start the server.

Because Informix recommends the use of the VPCLASS parameter, the VPCLASS parameter
will be discussed in this document. If you would rather use the other parameters, consult the
INFORMIX-Universal Server Administrator’s Guide.

The basic syntax of the VPCLASS parameter is
VPCLASS classname,{num=num_VPS,max=max_vps,aff=affinity,noage,noyield}

The ‘classname’ is the only required field. It is possible to name and create your own
user-defined virtual processor classes. However, ESRI Spatial DataBlade uses the predefined

Chapter 2 Essential Informix configuring and tuning 45

CPU VP class. Unless you are using a DataBlade product or custom-built application that
requires the presence of a user-defined virtual processor class, do not create one.

CPU and AIO virtual processor classes

In addition to other possible uses, the AIO virtual processor maintains the Informix server
ancillary files such as the message log, so you should always define at least one.

UNIX systems use the AIO virtual processor for nonlogged I/O if kernel-asynchronous I/O
(KAIO) is not implemented or if the I/O performed is to a cooked file.

Windows NT systems always perform both logged and nonlogged I/O with the CPU virtual
processor whether the disk is NTFS or a raw device.

On UNIX systems, the AIO virtual processor is not used for nonlogged I/O if you have
implemented KAIO and the I/O is to a raw device. Instead, the CPU virtual processor
performs the I/O. Having the CPU class perform the I/O avoids expensive context switching
between the CPU virtual processor and the AIO virtual processor.

To implement kernel-asynchronous I/O on a UNIX system, consult the IDS_9.2 release notes
file under the $INFORMIXDIR/release directory. The file contains instructions that tell you
whether or not KAIO is enabled by default, how to enable or disable KAIO, and which
operating system patches are required to enable it.

Informix recommends the use of raw devices on UNIX systems whenever possible. A raw
device is a UNIX block device—in this case a hard disk—that’s been configured with a
‘character-special’ interface allowing the application, rather than the operating system, to
perform the I/O buffering. The counterpart, a cooked device, is managed by the operating
system. All I/O to a cooked device is buffered by the operating system.

Using a raw device on UNIX operating systems guarantees that committed data has been
written to disk. Also, the performance is better because data is transferred directly to shared
memory and not copied first to the operating system’s kernel buffer pool and then to shared
memory.

Logged I/O occurs whenever a change is made to a table record. Logged I/O is written to both
the physical log file and the logical log file. On Windows NT systems, a CPU virtual
processor always runs a KAIO thread to perform logged I/O. However, on UNIX systems, the
LIO virtual processor performs the I/O to the logical log I/O, and the PIO virtual processor
performs the physical log I/O if the log files are stored on a cooked file system or KAIO is not
implemented. If both KAIO and raw devices are used, the CPU virtual processor performs the

46 ArcSDE Configuration and Tuning Guide for Informix

logged I/O, eliminating the expensive context switching between the CPU virtual processor
and the LIO and PIO virtual processors.

The number of CPU virtual processors configured should not exceed the number of
processors in the system. Set the VPCLASS num option to 2 and the max option to the
number of processors on the server.

For example, if the server contains eight processors, the VPCLASS parameter would be set as
follows:
VPCLASS cpu, num=2, max=8

Informix recommends that you configure at least one AIO virtual processor to handle the
ancillary I/O. The recommendation always applies to Informix servers installed on
Windows NT systems and on UNIX systems if KAIO has been implemented and all
nonlogged I/O is to a raw device.

For UNIX systems that have implemented KAIO but are using some cooked file space,
Informix recommends you allocate two AIO virtual processors per active dbspace composed
of cooked file space. If four dbspaces use cooked file space and KAIO was implemented,
configure the AIO virtual processors as:
VPCLASS aio, num = 8

If KAIO is not implemented, Informix recommends that you allocate two AIO virtual
processors for each disk the Informix server accesses frequently. For example, if KAIO is not
implemented and eight disks are accessed frequently, implement the AIO virtual processor as:
VPCLASS aio, num = 16

Network virtual processors

Network virtual processors are implicitly defined by the NETTYPE parameter. The
NETTYPE parameter defines the number of poll threads allocated for each database
connection type. The NETTYPE parameter defines the connection protocol, number of poll
threads, concurrent connections per poll thread, and type of virtual processor that will run the
connection’s poll thread. A poll thread can be run by a CPU virtual processor or by a network
virtual processor. The network virtual processors include SHM, SOC, STR, and TLI. All of
the network virtual processors are defined under the general virtual processor class NET.
When the server is initialized it starts one network virtual processor or each poll thread of the
protocol defined by the NETTYPE parameter.

If the onconfig file contained the following NETTYPE parameter, as in the example below for
IBM and HP platforms:
NETTYPE soctcp,2,100,NET

Chapter 2 Essential Informix configuring and tuning 47

two SOC virtual processors would be started to run the poll threads for the TCP/IP sockets
protocol. The above example will accept 200 concurrent TCP/IP connections.

Poll threads can be run inline by a CPU virtual processor. Set the NETTYPE virtual processor
to CPU rather than NET if you wish to have the poll thread for a particular connection type
run by the CPU virtual processor. CPU virtual processors could run the TCP/IP socket poll
threads. The NETTYPE parameter would be set as follows for the Windows NT and
Windows 2000 platforms:
NETTYPE soctcp,2,100,CPU

Poll threads tend to run more efficiently on CPU virtual processors, particularly on single
processor computers. If you have a lot of CPU virtual processors, it is possible to run all the
poll threads on them. However, as user activity increases and the CPU virtual processors
become congested, it is a good idea to off-load the work of the poll threads to network virtual
processors. Poll threads are processed faster when run by network virtual processors, but they
must still wait for a CPU virtual processor to run the sqlexec thread that processes the client’s
request.

As a rule of thumb, when you have a large number of remote clients, use network processors
to run the poll threads for network connection protocols (soctcp or tlitcp, depending on the
platform). Use the CPU processors to run the few local client poll threads (ipcshm or ipcstr,
depending on the platform).

This is a typical NETTYPE configuration, an example for the Solaris 2 platform:
NETTYPE ipcshm,1,20,CPU
NETTYPE tlitcp,2,100,NET

Priority aging

You should disable priority aging on the UNIX systems supported by the ArcSDE for
Informix software. By default, priority aging is enabled for these systems. Over time, priority
aging decrements the priority of long-running processes. Informix virtual processors run
continuously and will run with a lower priority the longer the server is up, unless priority
aging has been disabled. To disable priority aging include the noage option on the VPCLASS
parameter of each virtual processor class.

For example, if you wish to disable priority aging for the CPU virtual processor class, you
would add the noage option.
VPCLASS CPU, num=2, max=8, noage

48 ArcSDE Configuration and Tuning Guide for Informix

Processor affinity

Processor affinity allows you to assign the CPU virtual processors to specific CPU processors.
Assigning CPU virtual processors directly to machine processors reduces context switching
and improves performance. The virtual processors are assigned using the aff option of the
VPCLASS parameter. The first processor starts at 0, and the last processor is the number of
CPU processors on the machine minus 1. To assign eight CPU virtual processors to eight
CPUs, the VPCLASS parameter would have the following syntax:
VPCLASS CPU, num=2, max=8, aff=0-7, noage

Not all platforms supported by ArcSDE for Informix software support processor affinity. See
the table on the following page for a list of platforms that do.

No yield option

You cannot set the noyield option for either the CPU or AIO virtual processor class. This
option can only be set for user-defined virtual processor classes. If you have created
user-defined virtual processor classes and wish to know more about this option, consult the
INFORMIX-Universal Server Administrator’s Guide.

KAIO Processor Affinity No Aging

Sun™ Solaris™ Yes No Yes

IBM® Yes No Yes

HP-UX® Yes Yes Yes

Windows NT Default Yes Default

Kernel asynchronous I/O is supported on all platforms supported by the ArcSDE for Informix software as is
priority aging. However, the operating system versions of the Sun and IBM platforms supported by the
ArcSDE for Informix software do not support processor affinity.

Chapter 2 Essential Informix configuring and tuning 49

Tuning memory
Memory tuning involves the allocation of the resource to the various components of the
Informix Dynamic Server. Each process running on a computer requires a certain amount of
memory to temporarily store its machine code and data. Database management system
(DBMS) servers also employ shared memory to store data used by many client applications.
For a complete examination of this subject, you should consult the INFORMIX-Universal
Server Administrator’s Guide and the INFORMIX-Universal Server Performance Guide.

Buffers

Buffers are specified in system pages. The Informix server checks the regular buffers to find
the pages it needs. If it doesn’t find them, it reads them into the regular buffers before using
them. Doing so avoids reading the pages from disk for each user, improving performance.
Pages accessed from memory are much faster than from disk. The pages are maintained in the
buffer as long as the instance remains up or until more recently accessed pages require the
space. Informix recommends that, initially, the buffers occupy 20–25 percent of physical
memory. For example, if the page on your system is 2 kilobytes and you have 512 MB of
physical memory, set BUFFERS to 65536 to occupy 25 percent of the physical memory.

Ideally, you want to keep the ratio of disk reads to buffer reads as low as possible. You can
monitor the ratio by periodically issuing onstat -p and examining the %cached reads after the
system has been up for a while. If this ratio falls below 90 percent for a decision support
system, you should consider increasing the size of the regular buffers.

50 ArcSDE Configuration and Tuning Guide for Informix

The figure above is a conceptual illustration of the Informix Dynamic Server’s memory management. At the
beginning of a transaction, pages are read into the data buffers from disk. An LRU queue is selected at
random, and the address of the data buffer pages is added to the most recently used end of the free least
recently used queue FLRU. Changes to the data stored in the data buffers move the buffers from the FLRU
queue to the modified least recently used queue. A change also causes the before image of the data buffer
page to be written to the physical log buffer, and the modifying SQL statement is written to the logical log
buffer. When these buffers become full they are written to a corresponding file. In addition, the logical log
files must be archived in order to roll the transactions forward in the event of a system failure. The page
cleaner processes periodically wake up and write the accumulated changed data to disk. The page

Regular
Buffer

LRU
QUEUES

Data

Physical
Log Buffer

Logical
Log Buffer

Logical
Log File

Physical
Log File

LRU_MIN_DIRTY

LRU_MAX_DIRTY

Logical
Log

Archive

Read

Page
Cleaners

Write

Chapter 2 Essential Informix configuring and tuning 51

cleaners are activated whenever the user’s process detects that the percent of dirty pages listed in the
MLRU exceeds LRU_MAX_DIRTY. The page cleaners continue to write the dirty pages to disk until the
percent of dirty pages is less than LRU_MIN_DIRTY.

LRU queues and page cleaners

Each page read into the regular buffers is added to a least recently used (LRU) queue that
tracks the frequency by which each page is accessed. If the regular buffers become full, the
user sqlexec process selects an LRU queue at random to find pages that can be overwritten.
The sqlexec process examines the free least recently used (FLRU) list of the LRU queue.

Pages are free if they have not been changed. Changed or ‘dirty’ pages move from the FLRU
list to the modified least recently used (MLRU) list. If no free pages are listed in FLRU, the
sqlexec is forced to do a foreground write to clear pages from the MLRU queue. Foreground
writes are performed one at a time and are very expensive.

Page cleaners normally write dirty pages to disk. They perform inexpensive background
writes. However, if the page cleaners are unable to keep up, foreground writes become
necessary.

The onstat -F command can determine how often foreground writes have occurred. Avoid
foreground writes by making sure enough LRU queues and page cleaners are available. The
number of LRU queues is set by the LRU variable in the onconfig file. Informix recommends
you set LRU to a minimum of 4. For multiprocessor machines set LRU to four times the
number of CPUs.

The onconfig parameter CLEANERS controls the number of page cleaner threads running.
Set the CLEANERS to the number of disks receiving frequent updates.

The LRU_MIN_DIRTY and LRU_MAX_DIRTY parameters determine when the page
cleaners wake up and go to sleep. Page cleaners wake up whenever the percent of dirty pages
in the MLRU reaches the LRU_MAX_DIRTY threshold, and they clean the dirty pages
starting with the least recently used, until the percent of dirty pages is less than
LRU_MIN_DIRTY.

The default setting of the LRU_MIN_DIRTY is 50, and the default setting of the
LRU_MAX_DIRTY is 60. If the onstat -F command shows a significant number of
foreground writes, and increasing the number of LRU queues and page cleaners does not have
any effect, try lowering the LRU_MIN_DIRTY and LRU_MAX_DIRTY thresholds to
shorten the queues.

52 ArcSDE Configuration and Tuning Guide for Informix

Logical log buffers

The Informix server uses three log buffers to temporarily store changes. As one buffer flushes
to a log file, a user thread can write to another one. The log buffers generally default to
32 kilobytes or pages. Set the LOGBUFF to an even increment of the page size.

Determine the optimal size of the logical log buffer with the onstat -l command after the
system has been running for a while in update mode. Onstat -l reports the current statistics of
the physical log buffer and logical log buffer.

Under the Logical Logging section of the onstat -l output, if the value under pages/io is less
than 75 percent of the value under bufsize, the logical log buffer is too large; shared memory
is being wasted. Reduce the onconfig LOGBUFF parameter.

If the value under pages/io is greater than 95 percent of the value under bufsize, the logical log
buffer may be too small. Increase the LOGBUFF parameter.

Changes to the onconfig file do not take effect until you restart the Informix server.

Physical log buffers

The Informix server uses two physical log buffers to temporarily store the pages that are about
to be changed, commonly referred to as the before image. A physical buffer flushes to the
physical log file once it becomes full. As one buffer flushes, the other buffer becomes current
and the user thread writes to it.

The PHYSBUFF should always be an even increment of the page size.

Determine the optimal size of the physical log buffer with the onstat -l command after the
system has been running for a while in update mode. Onstat -l reports the current statistics of
the physical log buffer and logical log buffer.

Under the Physical Logging section of the onstat -l output, if the value under pages/io is less
then 75 percent of the value under bufsize, the physical log buffer is too large; shared memory
is being wasted. Reduce the onconfig PHYSBUFF parameter.

If the value under pages/io is greater than 95 percent of the value under bufsize, the physical
log buffer may be too small. Increase the PHYSBUFF parameter.

Changes to the onconfig file do not take effect until the next time you start the Informix
server.

Chapter 2 Essential Informix configuring and tuning 53

Residency

When the operating system switches between processes, it normally pages portions of process
memory to disk. Process memory designated as ‘resident’ is not swapped to disk. Part of the
Informix server’s shared memory is resident, but the operating system will not treat it as such
unless the onconfig RESIDENT parameter is set to 1. Set RESIDENT to 1.

50

C H A P T E R 3

Configuring DBTUNE storage
parameters

DBTUNE storage parameters allow you to control how ArcSDE clients create
objects within an Informix database. They determine such things as which
dbspace a table or index is created in. The storage parameters define the extent
size of the data object they stored as well as other Informix specific storage
attributes. Additional parameters exist that allow you to further configure the
Informix Spatial environment.

The DBTUNE table
The DBTUNE storage parameters are maintained in the DBTUNE metadata table. The
DBTUNE table, along with all other metadata tables, is created during the setup phase that
follows the installation of the ArcSDE software.

The DBTUNE table has the following definition:
Name Null? Datatype

keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keywords. Within each configuration keyword, there
are a number of storage parameters, and the names of these are stored in the parameter_name
field. Each storage parameter has a configuration string stored in the config_string field.

Chapter 3 Configuring DBTUNE storage parameters 51

After creating the DBTUNE table, the setup phase (sdesetupinfx command) of the ArcSDE 8.3
installation populates the table with the contents of the dbtune.sde file, which it expects to find
under the etc directory of the SDEHOME directory.

If the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents should
you decide to run it again.

Editing the DBTUNE table

Although you are free to edit the contents of the DBTUNE table using a SQL interface such as
DBACCESS, the sdedbtune administration tool has been provided to enable you to export the
contents of the table to a file. The file can then be edited with a UNIX file-based editor such as
"vi" or a Windows NT/20000 file-based editor such as "notepad". After updating the file, you
can repopulate the DBTUNE table using the import operation of the sdedbtune command.

In the following example the DBTUNE table is exported to the dbtune.out file, and the file is
edited with the UNIX "vi" file-based editor.
$ sdedbtune -o export -f dbtune.out -u sde -p fredericton

ArcSDE 8.3 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

 Successfully exported to file SDEHOME\etc\dbtune.out

$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p fredericton -N

ArcSDE 8.3 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

 Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file in the etc directory of the ArcSDE
home directory. You cannot relocate the file to another directory with a qualifying pathname.
By not allowing the relocation of the file, the sdedbtune command ensures that they are located
in the ArcSDE software's etc directory, under the ownership of the ArcSDE administrator.

The dbtune.proto file, located under the SDEHOME tools directory, provides an example of a
DBTUNE file that can be edited and imported into the DBTUNE table. Unlike the dbtune.sde

52 ArcSDE Configuration and Tuning Guide for Informix

file located under the SDEHOME etc directory, the dbtune.proto file contains suggested
nondefault values that you may or may not want to use.

Adding keywords to the DBTUNE table

You may add parameter groups to the DBTUNE table for any special purpose. For instance,
you may wish to create certain feature classes in a newly created tablespace that is segregated
from the rest of the data.

To add keywords, follow the instructions above for editing the DBTUNE table. When you edit
the export file, it is often a good idea to create a new parameter group as a cut and paste copy of
an existing parameter group in order to avoid introducing syntax errors. You may then edit the
configuration keyword and any of the strings to desired new values before saving the dbtune
file and importing it back into the DBTUNE table

Using the DBTUNE table
At its most basic level, the DBTUNE table provides configuration strings that are appended to
a CREATE TABLE or CREATE INDEX statement in SQL. The configuration strings specify
storage parameters that must be considered valid by the Informix server.

Selecting the configuration string

The choice of configuration strings by an ArcSDE application depends upon the operation
being performed and the type of object it is being performed on, as well as the configuration
keyword. For example, if the type of operation is CREATE TABLE and the type of table
being created is a business table, the parameter_name of B_STORAGE will be used to
determine the configuration string.

The ArcSDE application then searches the DBTUNE table for a configuration string whose
configuration keyword matches the given configuration keyword and whose parameter_name
matches the chosen name.

When running the sdetable and certain other ArcSDE administration commands, you may
specify your own configuration keyword. When running ArcSDE applications, the
configuration keyword is specified to the ArcSDE server automatically.

If the application cannot find the requested configuration string within the specified parameter
group, it searches the DEFAULT parameter group. If the requested configuration string cannot

Chapter 3 Configuring DBTUNE storage parameters 53

located within the DEFAULT parameter group, the ArcSDE use no configuration string and the
CREATE TABLE or CREATE INDEX statement picks up the defaults according to the rules
of the Informix server.

Table parameters

Table parameters define the storage configuration of an Informix table. The table parameter is
appended to an Informix CREATE TABLE statement during its creation by ArcSDE. Valid
entries into an ArcSDE table parameter include all Informix CREATE TABLE statement
parameters to the right of the statement's columns list.

For example, a business table created with the following Informix CREATE TABLE statement:

database cntry94;

--Create table cntry94
create table cntry94
(
area decimal(15,3),
name varchar(40,0),
abbrevname varchar(12,0),
fips_code varchar(2,0),
wb_cntry varchar(3,0),
feature st_multipolygon,
se_row_id integer,
primary key (se_row_id) constraint sde.sp_ref_pk
put feature in (small_business_table),
extend size 16 next size 16,
lock mode row
);

would be entered into a dbtune file B_STORAGE table parameter with the following
configuration string:
B_STORAGE " IN SMALL_BUSINESS_TABLE EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW”

Index parameters

Index parameters define the storage configuration of an Informix index. The index parameter is
appended to an Informix CREATE INDEX statement during its creation by ArcSDE. Valid
entries into an ArcSDE index parameter include all Informix CREATE INDEX statement
parameters to the right of the statement's column list.

54 ArcSDE Configuration and Tuning Guide for Informix

For example, an index created with the following Informix CREATE INDEX statement:
CREATE INDEX cntry94_idx on cntry94
fillfactor 90,
in business_index;

would be entered into a dbtune B_INDEX_USER storage parameter with the following
configuration string:
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"

Defining the storage parameters
Configuration keywords may include any combination of three basic types of storage
parameters: meta parameters, table parameters, and index parameters.

Meta parameters

Meta parameters define such things as the way certain types of data will be stored, the
environment of a keyword, or a comment that describes something about the keyword such as
what it should be used for.

The business table storage parameter

A business table is any Informix table created by an ArcSDE client, the sdetable administration
command, or the ArcSDE C application programming interface (API) SE_table_create
function.

Use the DBTUNE table's B_STORAGE parameter to define the storage configuration of a
business table.

The business table index storage parameters

Three index parameters exist to support the creation of business table indexes.

The B_INDEX_USER parameter holds the storage configuration for user-defined indexes
created with the C API function SE_table_create_index and the create_index operation of the
sdetable command.

The B_INDEX_ROWID parameter holds the storage configuration of the index ArcSDE
creates on the register table's object ID column, commonly referred to as the ROWID. A

Chapter 3 Configuring DBTUNE storage parameters 55

registered table can be created with the alter_reg operation of the sdetable command or from
the ArcCatalog interface.

The B_RTEE parameter holds storage configuration of the spatial column index ArcSDE
creates when a spatial column is added to a business table. This index is created by the ArcSDE
C API function SE_layer_create. This function is called by ArcInfo when it creates a feature
class and by the add operation of the sdelayer command.

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also be
registered with the alter_reg operation of the sdetable command or with ArcCatalog. The
SDE.TABLE_REGISTRY system table maintains a list of the currently registered tables.

Multiversioned table storage parameters

Registering a business table or feature class as multiversioned allows multiple users to maintain
and edit their copy of the object. At appropriate intervals each user merges the changes they
have made to their copy with the changes made by other users and reconciles any conflicts that
arise when the same features are modified.

ArcSDE creates two tables—the adds table and the deletes table—for each table that is
registered as multiversioned.

The A_STORAGE storage parameter maintains the storage configuration of the adds table.
Four other parameters hold the storage configuration of the indexes of the adds table. The adds
table is named A<n>, where <n> is the registration ID listed in the SDE.TABLE_REGISTRY
system table. For instance, if the business table ROADS is listed with a registration ID of 10,
ArcSDE creates the adds table as A10.

The A_INDEX_ROWID storage parameter holds the storage configuration of the index that
ArcSDE creates on the multiversion object ID column, commonly referred to as the ROWID.
The adds table ROWID index is named A<n>_ROWID_IX1, where <n> is the business table's
registration ID, which the adds table is associated with.

The A_INDEX_STATEID parameter holds the storage configuration of the index that ArcSDE
creates on the adds table's SDE_STATE_ID column. The SDE_STATE_ID column index is
called A<n>_STATE_IX2, where <n> is the business table's registration ID, which the adds
table is associated with.

The A_RTREE storage parameter holds the storage configuration of the index that ArcSDE
creates on the adds table's spatial column. If the business table contains a spatial column, the
column and its index are duplicated in the adds table.

56 ArcSDE Configuration and Tuning Guide for Informix

The A_INDEX_USER storage parameter holds the storage configuration of user-defined
indexes that ArcSDE creates on the adds table. The user-defined indexes on the business tables
are duplicated on the adds table.

The D_STORAGE storage parameter holds the storage configuration of the deletes table. Two
other parameters hold the storage configuration of the indexes that ArcSDE creates on the
deletes table. The deletes table is named D<n>, where <n> is the registration ID listed in the
SDE.TABLE_REGISTRY system table. For instance, if the business table ROADS is listed
with a registration ID of 10, ArcSDE creates the deletes table as D10.

The D_INDEX_STATE_ROWID storage parameter holds the storage configuration of the
D<n>_IDX1 index that ArcSDE creates on the deletes table's SDE_STATE_ID and
SDE_DELETES_ROW_ID columns.

The D_INDEX_DELETED_AT storage parameter holds the storage configuration of the
D<n>_IDX2 index that ArcSDE creates on the deletes table's SDE_DELETED_AT column.

Note: If a configuration keyword is not specified when the registration of a business table is
converted from single-version to multiversion, the adds and deletes tables and their indexes are
created with the parameters of the configuration keyword that the business table was created
with.

Raster table storage parameters

A raster column added to a business table is actually a foreign key reference to raster data
stored in a schema consisting of four tables and five supporting indexes.

The RAS_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the RAS table.

The RAS_INDEX_ID storage parameter holds the Informix CREATE TABLE storage
configuration of the RAS table index.

The BND_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the BND table index.

The BND_INDEX_COMPOSITE storage parameter holds the Informix CREATE INDEX
storage configuration of the BND table’s composite column index.

Chapter 3 Configuring DBTUNE storage parameters 57

The BND_INDEX_ID storage parameter holds the Informix CREATE INDEX storage
configuration of the BND table’s rid column index.

The AUX_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the AUX table.

The AUX_INDEX_COMPOSITE storage parameter holds the Informix CREATE INDEX
storage configuration of the AUX table's index.

The BLK_STORAGE storage parameter holds the Informix CREATE TABLE storage
configuration of the BLK table.

The BLK_INDEX_COMPOSITE storage parameter holds the Informix CREATE TABLE
storage configuration of the BLK table's index.

Arranging storage parameters by keyword
Storage parameters of the DBTUNE table are grouped by keyword. The following keywords
are present by default in the DBTUNE table.

� DEFAULTS

� DATA_DICTIONARY

� TOPOLOGY

� IMS_METADATARELATIONSHIPS

� IMS_METADATA

� IMS_METADATATAGS

� IMS_METADATATHUMBNAILS

� IMS_METADATAUSERS

� IMS_METADATAVALUES

� IMS_METADATAWORDINDEX

� IMS_METADATAWORD

58 ArcSDE Configuration and Tuning Guide for Informix

DEFAULTS keyword

Each dbtune table has a fully populated DEFAULTS keyword. The DEFAULTS keyword can
be selected whenever you create a table, index, feature class, or raster column. If you do not
select a keyword for one of these objects, the DEFAULTS keyword is used. If you do not
include a parameter in a keyword you have defined, ArcSDE substitutes the parameter from the
DEFAULTS keyword.

The DEFAULTS keyword relieves you of the need to define all the parameters for each of the
keywords you define. The parameters of the DEFAULTS keyword should be populated with
values that represent the average storage configuration of your data.

During installation, if the ArcSDE software detects a missing DEFAULTS keyword parameter
in the dbtune.sde file, it automatically adds the parameter. If you import a dbtune file with the
sdedbtune command, it will automatically add any parameters that are missing. ArcSDE will
detect the presence of the following list of parameters and insert the parameter and the default
configuration string.
##DEFAULTS
UI_TEXT "DEFAULTS"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK M
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE ""
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
A_RTREE ""
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_DELETED_AT "FILLFACTOR"
D_INDEX_STATE_ROWID "FILLFACTOR"
S_STORAGE ""
RAS_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
RAS_INDEX_ID "FILLFACTOR 90"
BND_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
BND_INDEX_COMPOSITE "FILLFACTOR 90"
BND_INDEX_ID "FILLFACTOR 90"
AUX_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
AUX_INDEX_COMPOSITE "FILLFACTOR 90"
BLK_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
BLK_INDEX_COMPOSITE "FILLFACTOR 90

END

NOTE: S_STORAGE was added to ArcSDE 8.3 to represent the “smart blob sbspace” and
must be set in order for B_RTREE to work successfully. S_STORAGE is used to store the
spatial feature shape data. The S_STORAGE is the equivalent of the “put feature in <smart

Chapter 3 Configuring DBTUNE storage parameters 59

large object sbspace> from the SDE 3.x dbtune.sde file. If S_STORAGE is not set, then spatial
feature data will be put in the default sbspace.

The SDE 3.x A_SBLOB_DBS parameter is not automatically converted to the S_STORAGE
parameter. You need to manually convert the A_SBLOB_DBS parameter into the new
S_STORAGE parameter; otherwise, the default smart large object sbspace is used. All other
SDE 3.x parameters convert automatically to ArcSDE 8.3 parameters using the “sdedbtune –o
import” command.

Setting the system table DATA_DICTIONARY keyword

During the execution of the install operation of the sdesetupinfx administration tool, the
ArcSDE and geodatabase system tables and indexes are created with the storage parameters of
the DATA_DICTIONARY keyword. You may customize the keyword in the dbtune.sde file
(found in the $SDEHOME/etc on UNIX systems or %SDEHOME%\etc on
Windows NT/2000 systems) prior to running the sdesetupinfx tool. In this way you can change
default storage parameters of the DATA_DICTIONARY keyword.

Edits to all of the geodatabase system tables and most of the ArcSDE system tables occur when
schema change occurs. As such, edits to these system tables and indexes usually happen during
the initial creation of an ArcGIS™ database with infrequent modifications occurring whenever
a new schema object is added.

Four of the ArcSDE system tables—VERSION, STATES, STATE_LINEAGES, and
MVTABLES_MODIFIED—directly participate in the ArcSDE versioning model and record
events resulting from changes made to multiversioned tables. If your site makes extensive use
of a multiversioned database, these tables and their associated indexes are highly active.
Separating these objects into their own tablespace allows you to position their data files with
data files that experience low I/O activity and thus avoid as much disk I/O contention as
possible.

If the dbtune.sde file does not contain the DATA_DICTIONARY keyword, or if any of the
required parameters are missing from the keyword, the following records will be inserted into
the DATA_DICTIONARY when the table is created. (Note that the dbtune file format is
provided here for readability.)
##DATA_DICTIONARY
UI_TEXT "DATA_DICTIONARY"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
STATES_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
STATES_INDEX "FILLFACTOR 90"
STATE_LINEAGES_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"

60 ArcSDE Configuration and Tuning Guide for Informix

VERSIONS_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
VERSIONS_INDEX "FILLFACTOR 90"
MVTABLES_MODIFIED_TABLE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
MVTABLES_MODIFIED_INDEX "FILLFACTOR 90"
END

The TOPOLOGY keyword

The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS and DIRTYAREAS. An SDE instance
must have a valid topology keyword in the dbtune table, or topology will not be built.

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted during
normal use. The DIRTYAREAS table will reduce in size only when database versions get
compressed.

Because the DIRTYAREAS table is much more active than the remaining topology tables, the
TOPOLOGY keyword may be compound. You may specify the DIRTYAREAS suffix to list
configuration string to be used to create the topology tables.

For Informix, the default values for TOPOLOGY and TOPOLOGY::DIRTYAREAS are
##TOPOLOGY_DEFAULTS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
UI_TOPOLOGY_TEXT "The topology default configuration"
A_INDEX_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
A_RTREE ""
B_RTREE ""
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
B_RTREE ""
A_RTREE ""
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_INDEX_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"

Chapter 3 Configuring DBTUNE storage parameters 61

D_INDEX_STATE_ROWID "FILLFACTOR 90"
END

The IMS METADATA keywords

The IMS METADATA keywords control the storage of the IMS Metadata tables. These
keywords are a standard part of the dbtune table. If the keywords are not present in the dbtune
file when it is imported into the DBTUNE table, ArcSDE applies software defaults. The
software defaults have the same settings as the keyword parameters listed in the dbtune.sde
table that is shipped with ArcSDE. The Informix parameter settings such as the initial and next
should be sufficient. However, you will need to edit the storage parameters tablespace names.
As always try to separate the tables and indexes into different tablespaces.

For more information about installing IMS Metadata and the associated tables and indexes refer
to ArcIMS Metadata Server documentation.

The IMS metadata keywords are as follows:

The IMS_METADATA keyword controls the storage of the ims_metadata feature class. Four
indexes are created on the ims_metadata business table. ArcSDE creates the following default
IMS_METADATA keyword in the DBTUNE table if the keyword is missing from the dbtune
file when it is imported.
##IMS_METADATA

B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE ""
S_STORAGE ""
COMMENT "The IMS metatdata feature class"
UI_TEXT ""
END

The IMS_METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarelationships business table. Three indexes are created on the
ims_metadatarelationships business table. ArcSDE creates the following default
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.
##IMS_METADATARELATIONSHIPS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

62 ArcSDE Configuration and Tuning Guide for Informix

The IMS_METADATATAGS keyword controls the storage of the ims_metadatatags business
table. Two indexes are created on the ims_metadatatags business table. ArcSDE creates the
following default IMS_METADATATAGS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.
##IMS_METADATATAGS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. One index is created on the ims_metadatathumbnails
business table. ArcSDE creates the following default IMS_METADATATHUMBNAILS
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is
imported.
##IMS_METADATATHUMBNAILS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAUSERS keyword controls storage of the ims_metadatausers business
table. One index is created on the ims_metadatausers business table. ArcSDE creates the
following default IMS_METADATAUSERS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.
##IMS_METADATAUSERS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAVALUES keyword controls the storage of the ims_metadatavalues
business table. Two indexes are created on ims_metadatavalues business table. ArcSDE creates
the following default IMS_METADATAVALUES keyword in the DBTUNE table if the
keyword is missing from the dbtune file when it is imported.
##IMS_METADATAVALUES
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex business table. ArcSDE creates the following default

Chapter 3 Configuring DBTUNE storage parameters 63

IMS_METADATAWORDINDEX keyword in the DBTUNE table if the keyword is missing
from the dbtune file when it is imported.
##IMS_METADATAWORDINDEX
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_USER "FILLFACTOR 90"

END

The IMS_METADATAWORDS keyword controls the storage of the ims_metadatawords
business table. One index is created on the ims_metadatawords business table. ArcSDE creates
the following default IMS_METADATAWORDS keyword in the DBTUNE table if the
keyword is missing from the dbtune file when it is imported.
##IMS_METADATAWORDS
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"

END

Changing the appearance of DBTUNE keywords in the ArcInfo
user interface

ArcSDE 8.3 introduces two new parameters that will support the ArcInfo™ user interface
UI_TEXT and UI_NETWORK_TEXT. ArcSDE administrators can add one of these
parameters to each keyword to communicate to the ArcInfo schema builders the intended use of
the keyword. The configuration string of these parameters will appear in ArcInfo interface
dbtune keyword scrolling lists.

The UI_TEXT parameter should be added to keywords that will be used to build tables, feature
classes, and indexes.

The UI_NETWORK_TEXT parameter should be added to parent network keywords.

Adding a comment to a configuration keyword

The COMMENT storage parameter allows you to add informative text that describes such
things as a keyword's intended use, the last time it was changed, or who created it.

LOGFILE keywords

Logfiles are used by ArcSDE to maintain temporary and persistent sets of selected records.
Whenever a user connects to ArcSDE for the first time, the SDE_LOGFILES and
SDE_LOGFILE_DATA tables and indexes are created.

64 ArcSDE Configuration and Tuning Guide for Informix

You may create a keyword for each user that begins with the LOGFILE_<username>. For
example, if the user’s name is STANLEY, ArcSDE will search the dbtune table for the
LOGFILE_STANLEY keyword. If this keyword is not found, ArcSDE will use the parameters
of the LOGFILE_DEFAULTS keyword to create the SDE_LOGFILES and
SDE_LOGFILE_DATA tables.

ArcSDE always creates the DBTUNE table with a LOGFILE_DEFAULTS keyword. If you do
not specify this keyword in the dbtune file that you import with the sdedbtune command,
ArcSDE will populate the dbtune table with default LOGFILE_DEFAULTS parameters.
Further, if the dbtune file contains some of the LOGFILE_DEFAULTS keyword parameters,
ArcSDE will supply the rest. Therefore, the LOGFILE_DEFAULTS keyword is always fully
populated.

If a user-specific keyword exists, but some of the parameters are not present, the parameters of
the LOGFILE_DEFAULTS keyword are used. If some of the parameters are not set in either a
user-specific keyword or the LOGFILE_DEFAULTS keyword, the Informix defaults are used.

Creating a logfile keyword for each user allows you to separate their logfiles onto different
devices by specifying the tablespace the logfile tables and indexes are created in. Most
installations of ArcSDE will function well using the LOGFILE_DEFAULTS parameters
supplied with the installed dbtune.sde file. However, for applications that make heavy use of
logfiles such as ArcGIS Desktop, it may help performance by spreading the logfiles across the
file system. Typically logfiles are updated whenever a selection set exceeds 100 records.

If the imported dbtune file does not contain a LOGFILE_DEFAULTS keyword, or if any of the
logfile parameters are missing, ArcSDE will insert the following records:
##LOGFILE_DEFAULTS

UI_TEXT "LOGFILE_DEFAULTS"
LF_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOC
LF_INDEXES "FILLFACTOR 90"
LD_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOC
LD_INDEX_DATA_ID "FILLFACTOR 90"
LD_INDEX_ROWID "FILLFACTOR 90"

END

The LD_STORAGE and LF_STORAGE parameters that control the storage of the
SDE_LOGFILE_DATA and SDE_LOGFILES tables by default are generated with Informix
logging turned on (the Informix NOLOGGING parameter is absent from the configuration
string of these parameters). If you are not using a customized application that stores persistent
log files, you should add NOLOGGING to the LD_STORAGE and LF_STORAGE
parameters. ESRI applications accessing ArcSDE data use temporary log files.

Chapter 3 Configuring DBTUNE storage parameters 65

Network class composite configuration keywords

The composite keyword is a unique type of keyword designed to accommodate the tables of the
ArcGIS network class. The network table's size variation requires a keyword that provides
configuration parameters for both large and small tables. Typically, the network descriptions
table is very large in comparison with the others.

To accommodate the vast difference in size of the network tables, the network composite
keyword is subdivided into elements. A network composite keyword has three elements: the
parent element defines the general characteristic of the keyword and the junctions feature class,
the description element defines the configuration of the DESCRIPTIONS table and its indexes,
and the network element defines the configuration of the remaining network tables and their
indexes.

The parent element does not have a suffix, and its keyword looks like any other keyword. The
description element is demarcated by the addition of the ::DESC suffix to the parent element's
keyword, and the network element is demarcated by the addition of the ::NETWORK suffix to
the parent element's keyword.

For example, if the parent element keyword is ELECTRIC the network composite keyword
would appear in a dbtune file as follows:

##ELECTRIC
A_RTREE ""
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16 LOCK
MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"
B_RTREE "IN BUSINESS_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
UI_NETWORK_TEXT "The electrical geometrical network class keyword"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
COMMENT "This keyword is dedicated to the electrical geometric

66 ArcSDE Configuration and Tuning Guide for Informix

network class "
END

##ELECTRIC::DESC
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16 LOCK
MODE ROW"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 INDELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS_INDEX"
END

##ELECTRIC::NETWORK

A_INDEX_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_STATEID "FILLFACTOR 90 IN DELTA_INDEX"
A_INDEX_USER "FILLFACTOR 90 IN DELTA_INDEX"
D_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90 IN DELTA_INDEX"
B_STORAGE "IN BUSINESS EXTENT SIZE 16 NEXT SIZE 16 LOCK
MODE ROW"
D_INDEX_DELETED_AT "FILLFACTOR 90 IN DELTA_INDEX"
B_INDEX_ROWID "FILLFACTOR 90 IN BUSINESS_INDEX"
B_INDEX_USER "FILLFACTOR 90 IN BUSINESS INDEX"
A_STORAGE "IN DELTA_TABLE EXTENT SIZE 16 NEXT SIZE 16
LOCK MODE ROW"
END

Following the import of the dbtune file, these records would be inserted into the DBTUNE
table. You can use DBACCESS to see the following information:
select keyword, parameter_name from dbtune;

KEYWORD PARAMETER_NAME
---------------- ----------------

Chapter 3 Configuring DBTUNE storage parameters 67

ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE
ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_USER
ELECTRIC A_STORAGE
ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE
ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC::DESC B_STORAGE
ELECTRIC::DESC B_INDEX_ROWID
ELECTRIC::DESC B_INDEX_USER
ELECTRIC::DESC A_STORAGE
ELECTRIC::DESC A_INDEX_ROWID
ELECTRIC::DESC A_INDEX_STATEID
ELECTRIC::DESC A_INDEX_USER
ELECTRIC::DESC D_STORAGE
ELECTRIC::DESC D_INDEX_DELETE_AT
ELECTRIC::DESC D_INDEX_STATE_ROWID
ELECTRIC::NETWORK B_STORAGE
ELECTRIC::NETWORK B_INDEX_ROWID
ELECTRIC::NETWORK B_INDEX_USER
ELECTRIC::NETWORK A_STORAGE
ELECTRIC::NETWORK A_INDEX_ROWID
ELECTRIC::NETWORK A_INDEX_STATEID
ELECTRIC::NETWORK A_INDEX_USER
ELECTRIC::NETWORK D_STORAGE
ELECTRIC::NETWORK D_INDEX_DELETE_AT
ELECTRIC::NETWORK D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC keyword parameters, the
network descriptions table is created with the parameters of the ELECTRIC::DESC keyword,
and the remaining smaller network tables are created with the ELECTRIC::NETWORK
configuration keyword.

The NETWORK_DEFAULTS configuration keyword

The NETWORK_DEFAULTS configuration keyword contains the default parameters for the
ArcGIS network class. If the user does not select a network class composite keyword from the
ArcCatalog interface, the ArcGIS network is created with the parameters within the
NETWORK_DEFAULTS configuration keyword.

Whenever a network class composite keyword is selected, its parameters are used to create the
feature class, table, and indexes of the network class. If a network composite keyword is
missing any parameters, ArcGIS substitutes the parameters of the DEFAULTS keyword rather
than the NETWORK_DEFAULTS keyword. So the parameters of the

68 ArcSDE Configuration and Tuning Guide for Informix

NETWORK_DEFAULTS keyword are only used in the event that no network composite
keyword is selected.

If a NETWORK_DEFAULTS configuration keyword is not present within a dbtune file that is
imported into the DBTUNE table, the following NETWORK_DEFAULTS configuration
keyword is created:

##NETWORK_DEFAULTS
A_RTREE ""
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
B_RTREE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
UI_NETWORK_TEXT "The network default configuration"
D_INDEX_DELETED_AT "FILLFACTOR 90"
COMMENT "The base system initialization parameters for
NETWORK_DEFAULTS"
END

##NETWORK_DEFAULTS::DESC
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
B_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"
A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
D_INDEX_DELETED_AT "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID "FILLFACTOR 90"
A_INDEX_STATEID "FILLFACTOR 90"

Chapter 3 Configuring DBTUNE storage parameters 69

A_INDEX_USER "FILLFACTOR 90"
D_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_STATE_ROWID "FILLFACTOR 90"
B_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
D_INDEX_DELETED_AT "FILLFACTOR 90"
B_INDEX_ROWID "FILLFACTOR 90"
B_INDEX_USER "FILLFACTOR 90"
A_STORAGE "EXTENT SIZE 16 NEXT SIZE 16 LOCK MODE ROW"
END

Informix default parameters
By default, Informix stores tables and indexes in the ArcSDE database dbspace using the
tablespace’s default storage parameters. Determine the ArcSDE database dbspace by querying:

C:\Informix> onstat –d

Editing the storage parameters
To edit the storage parameters, the sdedbtune administration command allows you to export the
DBTUNE table to a file located in the $SDEHOME/etc directory on UNIX servers and in the
%SDEHOME%\etc folder on Windows servers. It is an ArcSDE configuration file that
contains Informix table and index creation parameters. These parameters allow the ArcSDE
service to communicate to the Informix server such things as:

� which dbspace a table or index will be created in

� the size of its initial and next extent

� Other parameters that can be set on either the CREATE TABLE or CREATE INDEX
statement.

70 ArcSDE Configuration and Tuning Guide for Informix

Converting SDE 3.x storage parameters to ArcSDE 8.3
storage parameters

In SDE 3.x, the dbtune storage parameters were maintained in the dbtune.sde file. The storage
parameters of these previous versions mapped directly to Informix storage parameters.

The ArcSDE 8.3 storage parameters hold entire configuration strings of the table or index they
represent.

The conversion of SDE 3.x storage parameters to ArcSDE 8.3 occurs automatically when the
ArcSDE 8.3 sdesetupinfx utility reads the parameters from the SDE 3.x dbtune.sde file. The
import operation of the sdedbtune command also converts an SDE 3.x dbtune file into ArcSDE
8.3 storage parameters before it writes them to the dbtune table. To see the results you can
either use DBACCESS to list the parameters of the dbtune table or write the parameters of the
dbtune table to another file using the export operation of the sdedbtune command.

The following table lists the conversion of SDE 3.x storage parameters to ArcSDE 8.3 storage
parameters.

ArcSDE 3.x storage parameters

INDEX_TABLESPACE roads_index

A_IX_FILL 90
A_IX_TBLSP roads_index

A_SBLOB_DBS roads_sblob

ArcSDE 8.3 storage parameters

B_RTREE

 "FILLFACTOR 90
 IN roads_index”

S_STORAGE “roads_sblob”

ArcSDE 3.x storage parameters

A_TBLSP roads
A_INIT 16
A_NEXT 6
A_LOCK_ROW 1

ArcSDE 8.1.2 storage parameters

B_STORAGE
 “In roads
 EXTENT SIZE 16
 NEXT SIZE 16
 LOCK MODE ROW”

The SDE 3.x business table and index parameter prefix is "A_". The ArcSDE 8.1.2 business table and index parameter prefix is "B_”.
The SDE 3.x business table storage parameters are converted to the single ArcSDE 8.1.2 B_STORAGE storage parameter. The
B_STORAGE parameter holds the entire business table’s configuration string.

The SDE 3.x business table index storage parameters are converted to ArcSDE 8.3 storage parameter configuration strings. The
example below illustrates how the SDE 3.x storage parameters are converted into the ArcSDE 8.3 spatial column index storage
parameter B_RTREE. The other ArcSDE 8.3 business table index storage parameters, B_INDEX_ROWID and B_INDEX_USER,
are also constructed this way.

Chapter 3 Configuring DBTUNE storage parameters 71

The complete list of ArcSDE storage parameters

Parameter Name Value Parameter Description Default Value

STATES_LINEAGES_TABLE <string> State_lineages table B_STORAGE

STATES_TABLE <string> States table B_STORAGE

STATES_INDEX <string> States indexes B_INDEX_USER

MVTABLES_MODIFIED_TABLE <string> Mvtables_modified table B_STORAGE

MVTABLES_MODIFIED_INDEX <string> Mvtables_modified index B_INDEX_USER

VERSIONS_TABLE <string> Versions table B_STORAGE

VERSIONS_INDEX <string> Version index B_INDEX_USER

B_STORAGE <string> Business table Informix defaults

B_INDEX_ROWID <string> Business table object ID
column index

Informix defaults

B_INDEX_USER <string> Business table user index(s) Informix defaults

A_STORAGE <string> Adds table Informix defaults

A_INDEX_ROWID <string> Adds table object ID column
index

Informix defaults

A_INDEX_STATEID <string> Adds table sde_state_id
column index

Informix defaults

A_INDEX_USER <string> Adds table index Informix defaults

D_STORAGE <string> Deletes table Informix defaults

72 ArcSDE Configuration and Tuning Guide for Informix

Parameter Name Value Parameter Description Default Value

D_INDEX_ STATE_ROWID <string> Deletes table sde_states_id and
sde_deletes_row_id column
index

Informix defaults

S_STORAGE <string> Represents a “smart blob
sbspace”

Informix defaults

D_INDEX_DELETED_AT <string> Deletes table sde_deleted_at
column index

Informix defaults

LF_STORAGE <string> Sde_logfiles table Informix defaults

LF_INDEXES <string> Sde_logfile table column
indexes

Informix defaults

LD_STORAGE <string> Sde_logfile_data table Informix defaults

LD_INDEX_DATA_ID <string> Sde_logfile_data table Informix defaults

LD_INDEX_ROWID <string> Sde_logfile_data table
sde_row_id column index

Informix defaults

RAS_STORAGE <string> Raster RAS table Informix defaults

RAS_INDEX_ID <string> Raster RAS table RID index Informix defaults

BND_STORAGE <string> Raster BND table Informix defaults

BND_INDEX_COMPOSITE <string> Raster BND table composite
column index

Informix defaults

BND_INDEX_ID <string> Raster BND table RID column
index

Informix defaults

AUX_STORAGE <string> Raster AUX table Informix defaults

Chapter 3 Configuring DBTUNE storage parameters 73

Parameter Name Value Parameter Description Default Value

AUX_INDEX_COMPOSITE <string> Raster AUX table composite
column index

Informix defaults

BLK_STORAGE <string> Raster BLK table Informix defaults

BLK_INDEX_COMPOSITE <string> Raster BLK table composite
column index

Informix defaults

70

C H A P T E R 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables. Tables
with spatial columns are called standalone feature classes. Attribute-only
(nonspatial) tables are also an important part of any database. This chapter
will describe the table and feature class creation and loading process.

Data creation
There are numerous applications that can create and load data within an ArcSDE Informix
database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

� sdelayer—Creates and manages feature classes.

� sdetable—Creates and manages tables.

� sdeimport—Takes an existing sdeexport file and loads the data into a feature class.

� shp2sde—Loads an ESRI shapefile into a feature class.

� cov2sde—Loads a coverage, Map LIBRARIAN layer, or ArcStormTM layer into a
feature class.

� tbl2sde—Loads an attribute-only dBASE or INFO file into a table.

Chapter 4 Managing tables, feature classes, and raster columns 71

� sdegroup—A specialty feature class creation command that combines the features of
an existing feature class into single multipart features and stores them in a new
feature class for background display. The generated feature class is used for rapid
display of a large amount of geometry data. The attribute information is not retained,
and spatial searches cannot be performed on these feature classes.

� sderaster—creates, inserts, modifies, imports and manages raster stored in an
ArcSDE database.

These are all run from the operating system prompt. Command references for these tools are in
ArcSDE Developer Help.

Other applications include:

2. ArcGIS Desktop—Use ArcCatalog or ArcToolbox to manage and populate your
database.

3. ArcInfo Workstation—Use the Defined Layer interface to create and populate the
database.

4. ArcView® GIS 3.2—Use the Database Access Version 2.1c extension.

5. MapObjects®—Custom Component Object Model (COM) applications can be built to
create and populate databases.

6. ArcSDE CAD Client extension—For AutoCAD® and MicroStation® users.

7. Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide some
ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use graphical
user interface like the one found in ArcGIS Desktop. For details on how to use ArcCatalog or
ArcToolbox (another desktop data loading tool), please refer to the ArcGIS books:

� Using ArcCatalog

� Using ArcToolbox

� Building a Geodatabase

72 ArcSDE Configuration and Tuning Guide for Informix

Creating and populating a feature class

The general process involved with creating and loading a feature class is to:

1. Create the business table.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the
database.

3. Switch the feature class to load_only_io mode (optional step to improve bulk data
loading performance. It is OK to leave feature class in normal_io mode to load data.).

4. Insert the records (load data).

5. Switch the feature class to normal_io mode (builds the indexes).

6. Version the data (optional).

7. Grant privileges on the data (optional).

In the following sections, this process is discussed in more detail and illustrated with some
examples of ArcSDE administration commands usage and ArcInfo data loading utilities
through the ArcCatalog and ArcToolbox interfaces.

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from scratch
(requiring considerably more effort), or you can create a feature class from existing data such
as a coverage or ESRI shapefile. Both methods are reviewed below the “from scratch” method
being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command allows you to include a dbtune
configuration keyword containing the storage parameters of the table.

Although the table may contain up to 256 columns, ArcSDE requires that only one of those
columns be defined as a spatial column.

In this example, the sdetable command is used to create the ‘roads’ business table.
sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the dbtune configuration keyword (-k) ‘roads’ by the user ‘beetle’.

Chapter 4 Managing tables, feature classes, and raster columns 73

The same table could be created with a SQL CREATE TABLE statement using the Informix
SQL*Plus interface.
create table roads
(road_id integer,
name varchar(32),
shape integer)
tablespace beetle_data
storage (initial 16K next 8K);

At this point you have created a table in the database. ArcSDE does not yet recognize it as a
feature class. The next step is to record the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables and thus add a new feature class to the database.

Adding a feature class

After creating a business table, you must add an entry for the spatial column in the ArcSDE
LAYERS system tables before the ArcSDE server can reference it. Use the sdelayer
command with the “-o add” operation to add the new feature class.

In the following example, the roads feature class is added to the ArcSDE database. Note that
to add the feature class, the roads table name and the spatial column are combined to form a
unique feature class reference. To understand the purpose of the –e, –g, and –x options, refer
to the sdelayer command reference in ArcSDE Developer Help.
sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p bug -k
roads

The feature class tables and indexes are stored according to the storage parameters of the
roads configuration keywords in the DBTUNE table. Upon successful completion of the
previous sdetable command—to create a table—and the sdelayer command—to record the
feature class in the ArcSDE system tables—you have an empty feature class in normal_io
mode.

Switching to load-only I/O mode

Switching the feature class to load-only mode drops the spatial index and makes the feature
class unavailable to ArcSDE clients. Bulk loading data into the feature class in this state is
much faster due to the absence of index maintenance. Use the sdelayer command to switch
the feature class to load-only mode by specifying the “-o load_only_io” operation.
sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode. However, the grid size can be altered with the -o alter operation. The alter operation

74 ArcSDE Configuration and Tuning Guide for Informix

will apply an exclusive lock on the feature class, preventing all modifications by ArcInfo until
the operation is complete.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are several
ways to insert data into a feature class, but probably the easiest method is to convert an
existing shapefile or coverage or import a previously exported ArcSDE sdeexport file directly
into the feature class. A more “from scratch” method would be to add the data with an editor
such as ArcMap.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to “overwrite”
data that’s already there. Don’t use the init operation on feature classes that already contain
data unless you want to remove the existing data. Here, the shapefile, ‘rdshp’, will be loaded
into the feature class, ‘roads’. Note that the name of the spatial column (‘shape’ in this case)
is included in the feature class (-l) option.
shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, we can also use the cov2sde command:
cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal I/O mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients. For
example:
sdelayer -o normal_io -l roads,shape -u beetle -p bug

Now your feature class is ready for use by ArcSDE client applications.

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process that
allows multiple representations of your data to exist without requiring duplication or copies of
the data. ArcMap requires data to be multiversioned to edit it. For further information on
versioning data, refer to the Building a Geodatabase book.

In this example, the feature class called ‘states’ will be registered as multiversioned using the
sdetable alter_reg operation.
sdelayer -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Chapter 4 Managing tables, feature classes, and raster columns 75

Granting privileges on the data

Once you have the data loaded, it is often necessary for other users to have access to the data
for update, query, insert, or delete operations. Initially, only the user who has created the
business table has access to it. In order to make the data available to others, the owner of the
data must grant privileges to other users. The owner can use the sdelayer command to grant
privileges. Privileges can be granted to either another user or to a role.

In this example, a user called ‘beetle’ gives a user called ‘spider’ SELECT privileges on a
feature class called ‘states’.
sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are:

SELECT. The user may query the selected object(s) data.

DELETE. The user may delete the selected object(s) data.

UPDATE. The user may modify the selected object(s) data.

INSERT. The user may add new data to the selected object(s) data.

If you include the -I grant option, you also grant the recipient the privilege of granting other
users and roles the initial privilege.

Creating and loading feature classes from existing data

We have reviewed the “from scratch” method of creating a schema and then loading it. This
next section reviews how to create feature classes from existing data. This method is simpler
since the creation and load process is completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport, includes a
“-o create” operation, which allows you to create a new feature class within the ArcSDE
database. The create operation does all of the following:

� Creates the business table using the input data as the template for the schema

� Adds the feature class to the ArcSDE system tables

� Puts the feature class into load-only mode

76 ArcSDE Configuration and Tuning Guide for Informix

� Inserts data into the feature class

� When all the records are inserted, puts the feature class into normal_io mode

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatial column
definition is read directly from the shapefile. You can use the shpinfo command to display the
shapefile column definitions. As part of the create operation, you can specify which spatial
storage format you wish to adopt for the data storage by including a “–k” option that
references to a configuration keyword containing storage parameters for the business table and
indexes of the feature class.
shp2sde -o create -f rdshp -l roads,shape -k GEOMETRY_TYPE -u beetle -p bug

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table. Use
the ArcInfo describe command to display the ArcInfo data source column definitions.

In this example, an ArcStorm library, ‘roadlib’, is converted into the feature class, ‘roads’.
cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100 -e
l+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In this
example, the roadexp ArcSDE export file is converted into the feature class ‘roads’.
sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature class to other users.

Appending data to an existing feature class

A common requirement for data management is to be able to append data to existing feature
classes. The data loading commands described thus far have a -o append operation for
appending data. A feature class must exist prior to using the append operation. If the feature
class is multiversioned, it must be in an “open” state. It is also advisable to change the feature
class to load-only I/O mode and pause the spatial indexing operations before loading the data
to improve the data loading performance. The spatial indexes will be re-created when the

Chapter 4 Managing tables, feature classes, and raster columns 77

feature class is put back into normal I/O mode. Because the feature class has been defined, the
metadata exists and is not altered by the append operation.

In the shp2sde example below, a previously created ‘roads’ feature class appends features
from a shapefile, ‘rdshp2’. All existing features, loaded from the ‘rdshp’ shapefile, remain
intact, and ArcSDE updates the feature class with the new features from the rdshp2 shapefile.
sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation updates
the table and index statistics required by the Informix optimizer. Without the statistics, the
optimizer may not be able to select the best execution plan when you query the table. For
more information on updating statistics, see Chapter 2, ‘Essential Informix configuring and
tuning’.

Creating and populating raster columns
Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To create a
raster column, you will first need to convert the image file into a format acceptable to
ArcSDE. Then, after the image has been converted to the ESRI raster file format, you can
convert it into a raster column.

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To estimate the size of your raster data, refer to Appendix A, ‘Estimating the size of your
tables and indexes’.

To understand how ArcSDE stores rasters in Informix, refer to Appendix B, ‘Storing raster
data’.

Creating views
There are times when a DBMS view is required in your database schema. ArcSDE provides
the sdetable create_view operation to accommodate this need. The view creation is much like
any other Informix view creation. If you want to create a view using a layer and you want the
resulting view to appear as a feature class to client applications, include the feature class's

78 ArcSDE Configuration and Tuning Guide for Informix

spatial column in the view definition. As with the other ArcSDE commands, see ArcSDE
Developer Help for more information.

Exporting data
As with importing data, there are client applications that export data from ArcSDE as well.
With ArcSDE, the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between Informix
instances and to other supported DBMSs

sde2shp—creates an ESRI shapefile from an ArcSDE feature class

sde2cov—creates a coverage from an ArcSDE feature class

sde2tbl—creates a dBASE or INFO file from a DBMS table

Schema modification
There will be occasions when it is necessary to modify the schema of some tables. You may
need to add or remove columns from a table. The ArcSDE command to do this is sdetable
with the –o alter option. ArcCatalog offers an easy-to-use tool for this and other schema
operations such as modifying the spatial index (grids) and adding and dropping column
indexes.

Using the ArcGIS Desktop ArcCatalog and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use ArcCatalog
to create feature datasets and feature classes within those feature datasets to use specific
ArcGIS Desktop functionality. For that reason, we provide a glimpse of how to use
ArcToolbox and ArcCatalog to load data. Please refer to the ArcInfo documentation on
ArcCatalog, ArcToolbox, and the geodatabase for a full discussion of these tools.

Chapter 4 Managing tables, feature classes, and raster columns 79

Loading data

You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm layers
into geodatabase feature classes with the ArcToolbox and ArcCatalog applications.
ArcToolbox provides a number of tools that enable you to convert data from one format to
another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde, cov2sde, and
sdeimport, accept configuration keywords.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase.

The configuration keyword contains storage parameters that list the Informix storage
parameters that ArcSDE creates the feature class business table and indexes with.

The shapefile CASNBRST.shp is converted to a feature class vtest.CASNBRST using ArcToolbox.

80 ArcSDE Configuration and Tuning Guide for Informix

Versioning your data

ArcCatalog also provides a means for registering data as multiversioned. Simply right-click
the feature class to be registered as multiversioned and select the Register As Versioned
context menu item.

A feature class is registered as multiversioned from within ArcCatalog.

Compressing the geodatabase

When the multiversioned tables of a geodatabase have been edited over an extended period of
time, and the number of states and rows in the delta tables has grown significantly,
performance can be improved by running the compress database command. It is good to
compress your database as often as possible.

The compress command removes the states that are no longer referenced by a version and
moves the rows in the delta tables, which are common to all versions, to the business table. To
achieve the maximum benefit when you run the compress command, first reconcile, post, and
delete each version with the DEFAULT version. Sometimes this may not be a reasonable
option based on your organization’s work flow. At a minimum, to improve performance,

Chapter 4 Managing tables, feature classes, and raster columns 81

simply reconcile each version with the DEFAULT version and save, then perform the
compress. This will ensure that all the edits in the DEFAULT version will be compressed
from the delta tables to the business table. The compress command can be executed without
first reconciling, posting, and deleting each version, but the performance benefits may not be
as noticeable.

You can perform a compress of the database by using either the ArcCatalog or ArcSDE
command line.

To perform a compress of the database, you must start ArcCatalog and add the compress
database tool. To add the tool, right-click the gray area of the toolbar and select Customize.

From the Customize menu, choose the Command tab and select Geodatabase tools. Select
Compress Database Command and drag it to the toolbar.

To use the Compress Database tool, connect to your ArcSDE service as the sde user. Click on
the sde connection, click the compress tool, and answer yes to the popup window asking if
you are sure if you want to compress the database.

To compress the database from the command line, use sdeversion from either the DOS or
UNIX prompt.

sdeversion -o compress [-N]
 -u <DB_user_name> [-p <DB_User_password>] [-q]
 [-i <service>] [-s <server_name>] [-D <database>]

For more information on the sdeversion command, refer to ArcSDE Developer Help.

Granting privileges

Using ArcCatalog, right-click on the data object class and click on the Privileges context
menu. From the Privileges context menu assign privileges specifying the username and the
privilege you wish to grant to or revoke from a particular user.

82 ArcSDE Configuration and Tuning Guide for Informix

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset, feature
class, or table, to assign privileges to other users or roles.

Creating a raster column with ArcCatalog

Using ArcCatalog, right-click on the database connection, point to Import, and click on Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want to
change the coordinate reference system, tile size, pyramids option, or configuration keyword.
Click OK to import the raster file into the Informix database.

Chapter 4 Managing tables, feature classes, and raster columns 83

84

C H A P T E R 5

National language support

Configuring ArcSDE for Informix to use a specific locale begins with the
Informix database. The database must be created with the correct locale
before data can be stored in it. The next step is to configure the Open
Database Connectivity (ODBC) data source names (DSN) to transfer the data
in the proper locale and make the correct codepage conversions that may be
required when the operating systems of the client and server are different.
This chapter provides guidelines for configuring ArcSDE with the correct
locales. For more information refer to the Informix document Informix Guide
to GLS functionality.

Creating an Informix database with a specific language
locale

An Informix database must be created with a specific locale. If the locale is not set when the
database is created, the database locale defaults to US English: en_us.8859-1 for UNIX and
en_us:1252 for Windows NT/2000.

For example, to create a database that will store French characters on a UNIX server, set the
DB_LOCALE variable to fr_fr.8859-1 before starting the Informix SQL utility DBACCESS.
All database created during this DBACCESS session will be created with the French locale
fr_fr.8859-1. To determine what the proper locale is for your database, consult the Informix
document Informix Guide to GLS functionality.

Setting the NLS_LANG variable on the client
Once the ArcSDE Informix ArcSDE database has been created with the proper character set,
data can be loaded into it using a variety of applications such as ArcGIS Desktop and the
ArcSDE administration tools shp2sde and cov2sde. To properly convert and preserve the
characters, you must set the Informix NLS_LANG variable in the client applications system
environment.

Chapter 5 Global language support 85

For instance, using ArcToolbox installed on Windows NT/2000 to convert a coverage
containing German attribute data into an Informix database on a UNIX server created with the
Western European character set WE8ISO8859P1, you would set the NLS_LANG to
GERMAN_GERMANY.WE8ISO8859P1. To set the NLS_LANG variable for ArcToolbox,
click Start, Settings, and Control Panel. Double-click on the System icon and select the
Environment tab after the System menu appears. Click on the System Variables scrolling list
and enter NLS_LANG in the Variable: input line and
GERMAN_GERMANY.WE8ISO8859P1 in the Value: input line. Click Set and then OK.

Setting the NLS_LANG variable for Windows NT/2000 clients

Be careful setting the NLS_LANG on the Windows NT/2000 platforms because there are
actually two different codepage environments on this platform. Windows applications such as
ArcGIS Desktop run in the Windows American National Standards Institute (ANSI)
codepage environment, while ArcSDE administration tools and C and Java API applications
invoked from the MS–DOS Command Prompt run in the original equipment manufacturer
(OEM) codepage environment. Some languages require two different NLS_LANG settings
for the language character set component for each of these codepage environments.

For instance, in the above example the NLS_LANG variable would be set to
GERMAN_GERMANY.WE8PC850 if the data was loaded from the MS–DOS Command
Prompt using the ArcSDE administration tool shp2sde. If you use both Windows applications
and MS–DOS applications together, then you should set the NLS_LANG variable for MS–
DOS applications when you open the MS–DOS Command Prompt using the MS–DOS SET
command.

SET NLS_LANG = GERMAN_GERMANY.WE8PC850

To determine if your language requires a separate language character set, consult the Informix
Guide to GLS functionality.

For more information on ArcInfo national language support, refer to the National Language
Support section of the Systems Administration chapter found on your ArcDoc™ C

Configuring the Informix server locale
The server local identifies the locale that the database server uses for its server-specific files
on the server computer. Set the server locale in the environment of the Informix DBA before
starting the Informix server.

After the server locale has been set, all error messages and output to the online.log file will be
reported in the locale set by the SERVER_LOCALE variable. Set the local in the DBAs
system environment before starting the Informix server. The SERVER_LOCALE variable
does not perform a codepage conversion during a SQL session.

86 ArcSDE Configuration and Tuning Guide for Informix

Configuring the Informix locale for ArcSDE
The Informix CLI does not obtain locale information from the system environment. The
INFORMIX CLI driver obtains the client and database locale information from the ODBC
DSN. Add the following parameters to the .odbc.ini for UNIX or the ODBC registry for
Windows NT.
CLIENT_LOCALE=
DB_LOCALE=
TRANSLATIONDLL=$(INFORMIXDIR)/lib/esql/igo4a304.so

For an example:
CLIENT_LOCALE=fr_fr.PC-Latin-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL=/export/home/prods/csdk202/lib/esql/igo4a304.so

Setting the locale for ArcSDE
Add the locale information to the sde DSN on the computer that the ArcSDE service is started
on. For an example, if the sde database is a French Language database on UNIX, add the
following locale information to the sde DSN. For the sde DSN the CLIENT_LOCALE and
the DB_LOCALE are always set to the locale the sde database was created with.
[sde]
. . .
CLIENT_LOCALE=fr_fr.8859-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL= $(INFORMIXDIR)/lib/esql/igo4a304.so

Chapter 5 Global language support 87

The locale settings of the other DSNs will depend on the locale of the client. The
DB_LOCALE of these DSNs is always set to the locale that the database was created with.
The CLIENT_LOCALE, however, is set to the locale that the client will use. For instance, if
the INFORMIX server is running on a UNIX host and the database was created with a French
locale, the DB_LOCALE would be set to fr_fr.8859-1—the French locale for a database
created on a UNIX server. The CLIENT_LOCALE is set to the locale of the client
environment. If the client environment is on Windows NT, the CLIENT_LOCALE would be
set to fr_fr.PC-Latin-1.
[bladetest]
. . .
CLIENT_LOCALE=fr_fr.PC-Latin-1
DB_LOCALE=fr_fr.8859-1
TRANSLATIONDLL= $(INFORMIXDIR)/lib/esql/igo4a304.so

Although the ArcSDE client and INFORMIX database can have a different locale, they must
always be of the same basic language. For instance, you cannot create a French database, set
the DB_LOCALE to fr_fr.8859-1, and then set the CLIENT_LOCALE to a non-French
locale.

88

C H A P T E R 6

Backup and recovery

This chapter provides you with some basic backup and recovery guidelines.
You should refer to the backup and recovery guidelines presented in the
Archive and Backup for Informix Dynamic Server.2000 and Informix Backup
and Restore Guide.

Data recovery system
The central concepts of a data recovery system for Informix Dynamic Server 2000 can be
explained by answering the following questions:

� What is a Dynamic Server recovery system?

� What is an archive?

� What is a logical-log backup?

� What is a restore?

Informix provides two recovery systems for Dynamic Server: the ON-Archive system and the
ontape utility. You can also use the ON-Bar utility to perform backup and restore operations.
Please see the recommended Informix documentation (Archive and Backup for Informix
Dynamic Server.2000 and Informix Backup and Restore Guide) for differences between these
backup and recovery systems and their usage.

What is a Dynamic Server recovery system?
A Dynamic Server recovery system enables you to back up your Dynamic Server data and
subsequently restore it in the event that your current data becomes corrupt or inaccessible. The
causes of data corruption or loss can range from a program error to disk failure to a disaster that
damages the entire facility. A recovery system enables you to recover data that you already lost
due to such mishaps.

Chapter 6 Backup and recovery 89

What is an archive?

An archive is a copy of either all or some portion of the data that Dynamic Server manages.
More precisely, an archive is a copy of one or more Dynamic Server dbspaces (database
spaces) and any supporting data that you might need to restore them.

You create an archive of Dynamic Server data on tape or disk that, ideally, you store in a safe
location that is separate from your computer facility.

What is a logical-log backup?

A logical-log backup is a copy on tape or disk of logical-log files that you have made full and
eligible for backup. The logical-logs files store a record of Dynamic Server activity that occurs
between archives.

What is a Dynamic server restore?

A Dynamic Server restore re-creates Dynamic Server data, particularly Dynamic Server
dbspaces, from an archive and backed-up logical-log files.

Physical and logical restores

You must restore Dynamic Server data in two operations. The first operation is a physical
restore and the second, which must follow the first, is a logical restore.

Backing up the database
Base the frequency of your backups on the rate at which the data in your database is changing.
The more changes that occur, the more frequently backups should occur.

The following command can be used to back up an ArcSDE database that contains spatial data:
dbexport sde -c

where sde is the name of the ArcSDE database.

For more information on different Informix database backup and recovery strategies, refer to
the Archive and Backup Guide for Informix Dynamic Server 2000.

Regardless of which backup and restore mode you are using, you should make regular full
backups of your Informix databases. A full backup should include the Informix database and
the giomgr.defs, dbinit.sde, and services.sde files. You should also back up any dbtune files you
have created and imported into the DBTUNE table.

Recovering the database
For the recovery of an Informix database refer to the Archive and Backup for Informix
Dynamic Server 2000 and Informix Backup and Restore Guide. Once the Informix database

90 ArcSDE Configuration and Tuning Guide for Informix

has been recovered, if necessary, restore the ArcSDE installation from the ArcSDE media and
the dbtune files, giomgr.defs, dbinit.sde, and services.sde files from your backup tapes.

The following command can be used to recover your ArcSDE data that contains spatial data:
dbimport sde -c -d sdedbs -l buffered

where sde is the name of the ArcSDE database and sdedbs is the name of the
sbspace being used.

You should test your backup before you need it. If you have just loaded your database, you
should do a full backup and then recover the database from tape to make sure the recovery
process will work when you need it.

91

A P P E N D I X A

Estimating the size of your
tables and indexes

The formulas provided in this appendix provide approximations of the actual
sizes of the Informix tables and indexes created by ArcSDE.

Estimating the size of your spatial tables
The INFORMIX-Online Dynamic Server Performance Guide provides precise guidelines for
estimating table size. If you require such precision you should consult the ‘Table Placement,
Layout and Fragmentation’ chapter. However, the rough estimates in this document should be
within 100 MB for very large tables.

This estimation method requires five steps.

1. Estimate the size of the spatial column.

2. Estimate the actual row size of the spatial table.

3. Estimate the metadata space requirements.

4. Estimate the storage space for the spatial table.

5. Estimate the smart large object storage space.

Estimating the size of the spatial column

Estimate the size of the spatial column with:

spatial column size = (average points per feature * coordinate factor) + annotation size

The average points per feature is the sum of all coordinate points required to render the features
of a spatial table divided by the number of rows in the table. If you are about to convert a large
number of shapefiles, coverages, or other geographic data into an ArcSDE spatial table, it is
unlikely that you can obtain the sum of all coordinates, let alone the number of rows required to
perform this calculation. The table below lists reasonable approximations of the average
number of points per feature that each data type often has.

92 ArcSDE Configuration and Tuning Guide for Informix

The values listed in the table follow this simple logic. Point data type is always defined by a
single coordinate.

Linestrings and polygons rendering a dense urban condition tend to have fewer coordinates
than a sparse rural condition.

Most linestrings in an urban center have two coordinates. However, curves that define round
features such as cul-de-sacs require several more coordinates, so urban linestrings tend to
average about five coordinates.

In a rural setting, linestrings tend to be longer, as features such as roads tend to extend for
greater length, interrupted only by streams, rivers, and other rural networks.

The collection data types (multipoints, multilinestrings, and multipolygons) are difficult to
estimate. The numbers shown below are based on the datasets that these data types are often
applied to (broadcast patterns for multipoints, stream networks for multilinestrings, and island
topology for multipolygons).

Data Type Average Points per Feature

point 1

linestring (urban) 5

linestring (rural) 50

polygons (urban) 7

polygons (rural) 150

multipoint 50

multilinestring 250

multipolygon 1000

Select the coordinate factor from the table below.

Coordinate Type Coordinate Factor

xy 4.8

xyz 7.2

xym 7.2

xyzm 9.6

The coordinate factor is based on the type of coordinate stored. If the spatial column stores only
x- and y-values, the coordinate factor is 4.8. If in addition to the x- and y- values the spatial
column stores z-values (for three-dimensional applications) or measures (used by network
analysis packages), the coordinate factor is 7.2. The coordinate factor is 9.6 if both z-values and
measures are stored.

Appendix A Estimating the size of your tables and indexes 93

If your layer includes annotation, set the annotation size to 300 bytes. The annotation size
includes the space required to store the text, the placement geometry, the lead line geometry (if
one exists), and various metadata attributes describing the annotation’s size and font. Three
hundred is the average number of bytes required to store most annotation. The number will vary
depending on factors such as the size of the text string and the complexity of the placement
geometry. However, the variation becomes insignificant for large tables.

Estimating the actual row size of the spatial table

To determine the row size of the remaining columns of a spatial table, create the table without
the spatial column and query the row size column of the systables table. In this example, a lots
table is created with three columns.
create table lots (lot_id integer,
 owner_name varchar(128),
 owner_address varchar(128))

Selecting the row size for the lots table from systables returns a value of 262 bytes.
select rowsize from systables where tabname = 'lots';
262

Tables containing variable-length columns of type VARCHAR or NVARCHAR require the
row size to be reduced to reflect the actual length of the data stored.

In the sample lots table the lot_id integer column is a fixed length and always occupies four
bytes. However, the owner_name and owner_address are variable-length varchar columns and
may occupy up to 129 bytes each (an extra byte is required for the null terminator). Upon closer
examination it is determined that the average size of the owner name is 68 bytes and the
average size of the address is 102. The row size should be reduced.

actual row size = systables row size - ((size of owner_name - average owner name) +
 (size of owner_address - average owner address))

actual row size = 262 - ((129 - 68) + (129 - 102))

actual row size = 262 - (61 + 27)

actual row size = 174

Estimating the metadata space requirement

Informix requires a certain amount of space to store metadata about the table and the rows.
A spatial table with more than 10,000 rows will require about 200 bytes of metadata per row.
Tables with fewer than 10,000 rows but more than 1,000 require 300 bytes. Tables with fewer
than 1,000 rows add 400 bytes per row.

Number of Rows Metadata Bytes

>10,000 200

1,000–10,000 300

94 ArcSDE Configuration and Tuning Guide for Informix

<1,000 400

Estimating the storage space for the spatial table

To determine the storage space required for the spatial table, obtain a rough estimate of the
number of rows in the table. Once you have that, add the spatial column size, the attribute
column size, and the metadata size together and multiply the sum by the estimated number of
rows. The result is a rough estimate of the size of the spatial table.

Estimating the smart large object storage space

A geometry value is stored inline whenever its size is less than or equal to 930 bytes. Geometry
values greater than or equal to 930 bytes are stored offline in a designated smart large object.
When geometries are written to a smart large object, an inline pointer of 64 bytes references the
geometry.

Determine the amount of smart large object space required with the following formula:

smart large object ratio = (spatial column size / 1920)

The smart large object ratio cannot be greater than 1. So if the smart large object ratio is greater
than one, set it to 1.

smart large object space = ((smart large object ratio) * number of rows)

Determine the amount of inline space required with the following formula:

inline space = (size of spatial table) - (smart large object space)

Estimating the size of your ArcSDE indexes
The ArcSDE server creates and maintains two indexes whenever you add a spatial column to
one of your tables. The server creates an rtree index on the spatial column and a btree index on
the SE_ROW_ID integer column. The spatial column rtree index is named a <N>_ix1, and the
SE_ROW_ID btree index is named a <N>_ix2. The <N> in the index names represents the
spatial column’s unique layer number assigned by the ArcSDE server.

The indexes are 3 percent greater than the metadata and spatial column size of the table.
Calculate the index space requirements by combining the spatial column size and the metadata
size and multiplying this sum by the expected number of rows in the table. Increase the product
by 3 percent (multiply by 1.03).

index space = ((metadata size + spatial column size) * expected number of rows) * 1.03

96

A P P E N D I X B

Storing raster data

A raster is a rectangular array of equally spaced cells that, taken as a whole,
represent thematic, spectral, or picture data. Raster data can represent
everything from qualities of land surface such as elevation or vegetation to
satellite images, scanned maps, and photographs.

You are probably familiar with raster formats, such as tagged image file
format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics
Interchange Format (GIF), that your Internet browser renders. These rasters are
composed of one or more bands. Each band is segmented into a grid of square
pixels. Each pixel is assigned a value that reflects the information it represents
at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products, review
Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

ArcSDE stores raster datasets similar to the way it stores compressed binary feature classes (see
Appendix C, ‘ArcSDE compressed binary’). A raster column is added to a business table, and
each cell of the raster column contains a reference to a raster stored in a separate raster table.
Therefore, each row of a business table references an entire raster.

ArcSDE stores the raster bands in the raster band table. ArcSDE joins the raster band table to
the raster table on the raster_id column. The raster band table's raster_id column is a foreign
key reference to the raster table's raster_id primary key.

ArcSDE automatically stores any existing image metadata, such as image statistics, color maps,
or bitmasks, in the raster auxiliary table. The rasterband_id column of the raster auxiliary table
is a foreign key reference to the primary key of the raster band table. ArcSDE joins the
two tables on this primary/foreign key reference when accessing a raster band's metadata.

Appendix B Storing raster data 97

The raster blocks table stores the pixels of each raster band. ArcSDE tiles the pixels into blocks
according to a user-defined dimension. ArcSDE does not have a default dimension; however,
applications that store raster data in ArcSDE do. ArcToolbox and ArcCatalog, for example, use
default raster block dimensions of 128-by-128 pixels per block. The dimensions of the raster
block along with the compression method, if one is specified, determine the storage size of each
raster block. You should select raster block dimensions that, combined with the compression
method, allow each row of the raster block table to fit within an Informix data block. For
Informix databases, storing raster data should be created with a 16 KB Informix data block size.
See Appendix A, ‘Estimating the size of your tables and indexes’, for more information on
estimating the size of your raster tables and indexes.

The rendition of rasters

Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly
displayed on computer displays, which employ a
red-green-blue color rendition model.

Raster datasets have one or many
bands. In multiband rasters, a band

represents a segment of the
electromagnetic spectrum that has

been collected by a sensor.

Red
band

Green
band

Blue
band

Red-green-blue
composite

Attribute values
range from 0 to 255

in each band

255

0

Displaying multiband rasters

Electromagnetic spectrum

band 1

band 2

band 3

Bands often represent a portion of the electromagnetic
spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Monochrome
image

0 0 0 0 1 1

1 0 0 1 1 0

1 0 1 1 0 0

0 0 0 1 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0

251

41

86

118

141

187 236

201

16 25532

66

126

124 183

191 198

0

243

68

76 124

162

170

212

251 10

255

56

68

124

132

152

218

234

00 1 255

Grayscale
image

Display colormap
image

1 3

42

5

1

3

4

2

5

1 3

4

2

5

1

3

42

5

1

3

4

2

5

1 3

42

5

1 34 2

5

2

1

3

4

2

5

Colormap

red green blue

64

255 0

128

3232

0

255

255 128

25500

128

255

In a monochrome image, each cell
has a value of 0 or 1. They are often
used for scanning maps with simple
linework, such as parcel maps.

In a grayscale image, each cell has a
value from 0 to 255. They are often
used for black-and-white aerial
photographs.

One way to represent colors on an
image is with a colormap. A set of
values is arbritrarily coded to match a
defined set of red-green-blue values.

Cell values in single-band rasters can be drawn in these three basic ways.

Displaying single-band rasters

98 ArcSDE Configuration and Tuning Guide for Informix

Using a compression method, such as lossless lz77, almost always results in an improvement in
performance. The savings in disk space and network I/O generally offset the additional CPU
cycles required for the application to decompress the image.

The raster blocks table contains the rasterband_id column, which is a foreign key reference to
the raster band table's rasterband_id primary key. ArcSDE joins these tables together on the
primary/foreign key reference when accessing the blocks of the raster band.

ArcSDE populates the raster blocks table according to a declining resolution pyramid. The
height of the pyramid is determined by the number of levels specified by the application. The
application, such as ArcToolbox or ArcCatalog, may allow you to define the levels, or it may
request that ArcSDE calculate them, or it may offer both possible choices.

The pyramid begins at the base, or level 0, which contains the original pixels of the image. The
pyramid proceeds toward the apex by coalescing four pixels from the previous level into a
single pixel at the current level. This process continues until less than four pixels remain or until
ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels. The
additional levels of the pyramid increase the number of raster block table rows by one third.
However, since it is possible for the user to specify the number of levels, the true apex of the
pyramid may not be obtained, limiting the number of records added to the raster blocks table.

Figure B.1 When you build a pyramid, more rasters are created by progressively downsampling the previous
level by a factor of two until the apex is reached. As the application zooms out and the raster cells grow
smaller than the resolution threshold, ArcSDE selects a higher level of the pyramid. The purpose of the
pyramid is to optimize display performance.

The pyramid allows ArcSDE to provide the application with a constant resolution of pixel data
regardless of the rendering window's scale. Data of a large raster transfers quicker to the client
when a pyramid exists since ArcSDE can transfer fewer cells of a reduced resolution.

Raster schema
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so long as it
conforms to Informix's column naming convention. ArcSDE restricts one raster column per
business table.

Appendix B Storing raster data 99

The raster column is a foreign key reference to the raster_id column of the raster table created
during the addition of the raster column. Also joined to the raster table's raster_id primary key,
the raster band table stores the bands of the image. The raster auxiliary table, joined one-to-one
to the raster band table by rasterband_id, stores the metadata of each raster band. The
rasterband_id also joins the raster band table to the raster blocks table in a many-to-one
relationship. The raster blocks table rows store blocks of pixels, determined by the dimensions
of the block.

Figure B.2 When ArcSDE adds a raster column to a table, it records that column in the sde user's
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the raster,
raster band, raster auxiliary, and raster blocks table.

The sections that follow describe the schema of the tables associated with the storage of raster
data. Refer to Figure B.2 for an illustration of these tables and the manner in which they are
associated with one another.

100 ArcSDE Configuration and Tuning Guide for Informix

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the sde user's schema. ArcSDE also creates
four tables to store the raster images and metadata associated with each one.

NAME DATA TYPE NULL?

rastercolumn_id integer not null

description varchar(65) null

database_name varchar(32) not null

owner varchar(32) not null

table_name varchar(128) not null

raster_column varchar(128) not null

cdate integer not null

config_keyword varchar(32) null

minimum_id integer null

base_rastercolumn_id integer not null

rastercolumn_mask integer not null

srid integer null

Raster columns table

� rastercolumn_id (SE_INTEGER_TYPE)—The table's primary key.

� description (SE_STRING_TYPE)—The description of the raster table.

� database_name (SE_STRING_TYPE)—The Informix database the table is stored in.

� owner (SE_STRING_TYPE)—The owner of the raster column's business table.

� table_name (SE_STRING_TYPE)—The business table name.

� raster_column (SE_STRING_TYPE)—The raster column name.

� cdate (SE_INTEGER_TYPE)—The date the raster column was added to the business
table.

� config_keyword (SE_STRING_TYPE)—The DBTUNE configuration keyword whose
storage parameters determine how the tables and indexes of the raster are stored in the
Informix database. For more information on DBTUNE configuration keywords and their
storage parameters, review Chapter 3, ‘Configuring DBTUNE storage parameters’.

� minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster, it
establishes the value of the raster table's raster_id column.

� base_rastercolumn_id (SE_INTEGER_TYPE)—If a view of the business table is created
that includes the raster column, an entry is added to the RASTER_COLUMNS table. The
raster column entry of the view will have its own rastercolumn_id. The
base_rastercolumn_id will be the rastercolumn_id of the business table used to create the
view. This base_rastercolumn_id maintains referential integrity to the business table. It
ensures that actions performed on the business table raster column are reflected in the
view. For example, if the business table’s raster column is dropped, it will also be dropped

Appendix B Storing raster data 101

from the view (essentially removing the view's raster column entry from the
RASTER_COLUMNS table).

� rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used, maintained for future
use.

� srid (SE_INTEGER_TYPE)—The spatial reference ID (SRID) is a foreign key reference
to the SPATIAL_REFERENCES table. For images that can be georeferenced, the SRID
references the coordinate reference system that the image was created under.

Business table

In the example that follows, the fictitious BUILD_FOOTPRINTS business table contains the
raster column house_image. This is a foreign key reference to the raster table created in the
users schema. In this case the raster table contains a record for each raster of a house. It should
be noted that images of houses cannot be georeferenced. Therefore, the SRID column of the
RASTER_COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

building_id integer not null

building_footprint st_polygon not null

house_picture integer not null

BUILDING_FOOTPRINTS business table with house image raster column

� building_id (SE_INTEGER_TYPE)—the table's primary key

� building_footprints (ST_POLYGON)—a spatial column containing the building footprint
polygons

� house_image (SE_INTEGER_TYPE)—a raster column and foreign key reference to a
raster table containing the images of the houses located on each building footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS_<raster_column_id> in the Informix database, stores a
record for each image stored in a raster column. The raster_column_id column is assigned by
ArcSDE whenever a raster column is created in the database. A record for each raster column
in the database is stored in the ArcSDE RASTER_COLUMNS system table maintained in the
sde user's schema.

NAME DATA TYPE NULL?

raster_id integer not null

raster_flags integer null

description varchar(65) null

Raster description table schema (SDE_RAS_<raster_column_id>)

� raster_id (SE_INTEGER_TYPE)—the primary key of the raster table and unique
sequential identifier of each image stored in the raster table

102 ArcSDE Configuration and Tuning Guide for Informix

� raster_flags (SE_INTEGER_TYPE)—a bitmap set according to the characteristics of a
stored image

� description (SE_STRING_TYPE)—a text description of the image (not implemented at
ArcSDE 8.3)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The raster
band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of each image
stored in the raster table. The raster_id column of the raster band table is a foreign key reference
to the raster table's raster_id primary key. The rasterband_id column is the raster band table's
primary key. Each raster band in the table is uniquely identified by the sequential rasterband_id.

NAME DATA TYPE NULL?

rasterband_id integer not null

sequence_nbr integer not null

raster_id integer not null

name varchar(65) null

band_flags integer not null

band_width integer not null

band_height integer not null

band_types integer not null

block_width integer not null

block_height integer not null

block_origin_x float not null

block_origin_y float not null

eminx float not null

eminy float not null

emaxx float not null

emaxy float not null

cdate integer not null

mdate integer not null

Raster band table schema

� rasterband_id (SE_INTEGER_TYPE)—The primary key of the raster band table that
uniquely identifies each raster band.

� sequence_nbr (SE_INTEGER_TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key as a second way to uniquely identify the
raster band.

� raster_id (SE_INTEGER_TYPE)—The foreign key reference to the raster table’s primary
key. Uniquely identifies the raster band when combined with the sequence_nbr as a
composite key.

� name (SE_STRING_TYPE)—The name of the raster band.

Appendix B Storing raster data 103

� band_flags (SE_INTEGER_TYPE)—A bitmap set according to the characteristics of the
raster band.

� band_width (SE_INTEGER_TYPE)—The pixel width of the band.

� band_height (SE_INTEGER_TYPE)—The pixel height of the band.

� band_types (SE_INTEGER_TYPE)—A bitmap band compression data.

� block_width (SE_INTEGER_TYPE)—The pixel width of the band's tiles.

� block_height (SE_INTEGER_TYPE)—The pixel height of the band's tiles.

� block_origin_x (SE_FLOAT_TYPE)—The leftmost pixel.

� block_origin_y (SE_FLOAT_TYPE)—The bottom-most pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold the
coordinates of the extent.

� eminx (SE_FLOAT_TYPE)—the band's minimum x-coordinate

� eminy (SE_FLOAT_TYPE)—the band's minimum y-coordinate

� emaxx (SE_FLOAT_TYPE)—the band's maximum x-coordinate

� emaxy (SE_FLOAT_TYPE)—the band's maximum y-coordinate

� cdate (SE_INTEGER_TYPE)—the creation date

� mdate (SE_INTEGER_TYPE)—the last modification date

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel data of
the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the raster band
data enables efficient storage and retrieval of the raster data.

The rasterband_id column of the raster block table is a foreign key reference to the raster band
table's primary key. A composite unique key is formed by combining the rasterband_id,
rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id integer not null

rrd_factor integer not null

row_nbr integer not null

col_nbr integer not null

block_data byte not null

Raster block table schema

� rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster band
table’s primary key.

104 ArcSDE Configuration and Tuning Guide for Informix

� rrd_factor (SE_INTEGER_TYPE)—The reduced resolution dataset factor determines the
position of the raster band block within the resolution pyramid. The resolution pyramid
begins at 0 for the highest resolution and increases until the raster band’s lowest resolution
level has been reached.

� row_nbr (SE_INTEGER_TYPE)—The block's row number.

� col_nbr (SE_INTEGER_TYPE)—The block's column number.

� block_data (SE_BLOB_TYPE)—The block's tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores optional
raster metadata such as the image color map, image statistics, and bitmasks used for image
overlay and mosaicking. The rasterband_id column is a foreign key reference to the primary
key of the raster band table.

NAME DATA TYPE NULL?

rasterband_id integer NOT NULL

type integer NOT NULL

object byte NOT NULL

Raster auxiliary table schema

� rasterband_id (SE_INTEGER_TYPE)—the foreign key reference to the raster band
table’s primary key

� type (SE_INTEGER_TYPE)—a bitmap set according to the characteristics of the data
stored in the object column

� object (SE_BLOB_TYPE)—may contain the image color map, image statistics, etc.

Creating a raster catalog
An image catalog allows you to group many images by simply listing them in a table. ArcGIS
clients like ArcCatalog or ArcMap display the images as a group by reading the entries in the
image catalog table. The table must contain the five columns: IMAGE, XMIN, YMIN,
XMAX, and YMAX.

The IMAGE column contains the fully qualified name of the image, while the remaining four
columns describe the image’s extent. The table does not have to be registered with either
ArcSDE or the Geodatabase and does not have to be multiversioned. Here's an example:

IMAGE XMIN YMIN XMAX YMAX

TOPO1 322169.2 4094888 411902.3 4151957

TOPO2 323452.5 4150579 412586.2 4207658

Appendix B Storing raster data 105

TOPO3 233002.1 4096472 323537.9 4154628

TOPO4 234912.9 4151847 324666.3 4210094

TOPO5 676712.7 4090675 770814.6 4154551

TOPO6 675530.7 4146368 769195.7 4210173

TOPO7 324599.5 4206098 413235.3 4263136

TOPO8 325340.9 4261470 413692.2 4318609

TOPO9 236598.8 4207336 325702 4265705

TOPO10 239302.9 4262352 327095.4 4321168

TOPO11 413273.8 4316886 500802.2 4372878

If you have less than nine images, then all the images will display. If you have more, your
images will not display until you begin to zoom in.

108

A P P E N D I X C

Informix Spatial DataBlade
geometry types

ArcSDE for Informix stores its spatial data in the Informix Spatial DataBlade®

data types. Therefore, before ArcSDE can store spatial data in an Informix
database, the Spatial DataBlade must be registered. This document describes
the ArcSDE/Informix Spatial DataBlade interface and provides a brief
overview of the spatial data types and functions available following the
registration of the Informix Spatial DataBlade. For more information on the
Informix Spatial DataBlade, consult the Informix Spatial DataBlade Module
User’s Guide.

The Informix Spatial DataBlade embeds a GIS into your Informix® Dynamic Server (IDS)
kernel. The Informix Spatial DataBlade module implements the Open GIS Consortium, Inc.
(OpenGIS®, or OGC) SQL 3 specification of UDTs, columns capable of storing spatial data
such as the location of a landmark, a street, or a parcel of land.

The GIS of the past was spatially centric and focused on gathering spatial data and attaching
nonspatial ‘attribute’ data to it. The Spatial DataBlade module integrates spatial and nonspatial
data providing a seamless point of access through the Informix SQL interface.

In addition to new data types, the Informix Spatial DataBlade provides new capabilities such as
spatial joins. Application programmers typically join tables by comparing two or more columns
to determine whether their values are equal, not equal, greater than, and so on. The Informix
Spatial DataBlade includes functions capable of comparing the values of spatial columns to
determine if they intersect, overlap, and so forth. These two-dimensional functions can join
tables based on their spatial relationship and answer questions such as, “Is this school within
five miles of a hazardous waste site?” Internally, the Informix Spatial DataBlade ST_Overlaps
function evaluates this question as, “Does this polygon (the building footprint of a school)

Appendix C Informix Spatial DataBlade geometry types 109

overlap this circular polygon (the five-mile radius of a hazardous waste site)?” An application
programmer can join a table storing sensitive sites, such as schools, playgrounds, and hospitals,
to another table containing the locations of hazardous sites and return a list of sensitive areas at
risk.

How the Informix Spatial DataBlade works
Once the Informix Spatial DataBlade is installed, you can create spatially enabled tables that
include spatial columns. Geographic features can be inserted into the spatial columns. The
Informix Spatial DataBlade converts spatial data into its storage format from one of three
external formats:

� Well-known text (WKT) representation

� Well-known binary (WKB) representation

� ESRI shape representation

ArcSDE uses the ESRI shape representation.

Accessing the spatially enabled tables through the ArcSDE server allows you to write
applications using the existing tools offered by the GIS software or create applications using the
SDE C API. An experienced ODBC programmer can also make calls to the Informix Spatial
DataBlade spatial functions. The majority of this document is devoted to discussing and
applying these spatial functions.

After integrating spatial data into your database, you can include Spatial DataBlade functions in
your SQL statements, comparing the values of spatial columns, transforming the values into
other spatial data, and describing the properties of the data.

Adding records to the spatial reference table

The spatial reference system identifies the coordinate transformation matrix for each geometry.
Geometry is the term adopted by the OpenGIS Consortium to refer to two-dimensional spatial
data. All spatial reference systems known to the database are stored in the
SPATIAL_REFERENCES table.

NAME DATA TYPE NULL?

srid integer NOT NULL

description varchar(64) NULL

auth_name varchar(255) NULL

110 ArcSDE Configuration and Tuning Guide for Informix

auth_srid integer NULL

falsex float NOT NULL

falsey float NOT NULL

xyunits float NOT NULL

falsez float NULL

zunits float NULL

falsem float NULL

munits float NULL

srtext char(2048) NOT NULL

Spatial references table schema

The SPATIAL REFERENCES table stores a record for each spatial reference in the database.

The datatype for each column is defined below.

� srid (SE_INTEGER_TYPE)—Contains the unique ID that identifies each SRID in the
database.

� description (SE_STRING_TYPE)—An optional short description of the spatial reference
system. ArcSDE leaves this field NULL when it creates the spatial reference system
automatically.

� auth_name (SE_STRING_TYPE)—The name of the standard body cited for the spatial
references system. ArcSDE leaves this field NULL when it creates the spatial reference
system automatically.

� auth_srid (SE_STRING_TYPE)—The ID of the spatial reference system as defined by the
authority cited in auth_name. ArcSDE leaves this field NULL when it creates the spatial
reference system automatically.

� falsex (SE_FLOAT_TYPE)—The x-value offset or the minimum allowable X-ordinate
value.

� falsey (SE_FLOAT_TYPE)—The y-value offset or the minimum allowable Y-ordinate
value.

� xyunits (SE_FLOAT_TYPE)—The XY coordinate system units or spatial reference
system’s XY coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

� falsez (SE_FLOAT_TYPE)—The z-value offset or the minimum allowable Z-ordinate
value.

Appendix C Informix Spatial DataBlade geometry types 111

� zunits (SE_FLOAT_TYPE)—The z-coordinate system units or spatial reference system’s
z-coordinate precision. Coordinates whose precision exceeds this value are truncated when
they are stored.

� falsem (SE_FLOAT_TYPE)—The m-value offset or the minimum allowable M-ordinate
value.

� munits (SE_FLOAT_TYPE)—The m-coordinate system units or spatial reference
system’s m-coordinate precision. Coordinates whose precision exceeds this value are
truncated when they are stored.

� srtext (SE_STRING_TYPE)—The srtext column contains the well-known text
representation of the spatial reference system. For information on this subject, see
Appendix B, ‘OGC Well Known Text Representation of Spatial Systems’, in the Informix
Spatial DataBlade Module Users Guide.

Internal functions use the parameters of a spatial reference system to translate and scale each
floating point coordinate of the geometry into 32-bit positive integers prior to storage. Upon
retrieval, the coordinates are restored to their external floating point format.

The floating point coordinates are converted to integers by subtracting the falsex and falsey
values, which translates to the false origin, scales by multiplying by the xyunits, adds a half unit,
and truncates the remainder.

The optional z-coordinates and measures are dealt with similarly, except that they are translated
with falsez and falsem and scaled with zunits and munits, respectively.

SRID, the spatial_references primary key, contains a unique number for each spatial reference
system.

The spatial reference system is assigned to a geometry during its construction. The spatial
reference system must exist in the spatial reference table. All geometries in a column must have
the same spatial reference system.

Whenever ArcSDE creates a feature class, it searches the SPATIAL_REFERENCES table in
an attempt to locate a matching spatial reference system. If one is found the SRID is assigned to
the feature class; otherwise, ArcSDE adds a new spatial reference system to the
SPATIAL_REFERENCES table and assigns it to the feature class.

The ArcSDE administration tools, shp2sde columns and cov2sde columns, provide an option
for you to enter a predefined SRID when you use them to create a new feature class. In this
example, the roads coverage is converted to the roads feature class with a SRID of 10. The
coordinates of the coverage feature must fit within the extent, of the spatial reference system.
Each feature found to lie outside the spatial reference system’s extent is rejected.

112 ArcSDE Configuration and Tuning Guide for Informix

cov2sde -o create -l roads,feature -f roads -R 10 -g 100,0,0 -u world -p world

Creating feature classes in an Informix database

An Informix spatial table can include one or more spatial columns, although ArcSDE restricts a
feature class to a single spatial column. Spatial columns are defined with one of the Informix
Spatial DataBlade’s UDTs. A spatial column can only accept data of the type required by the
spatial column. For example, an ST_Polygon column rejects integers, characters, and even
other types of nonpolygon geometry.

When ArcSDE creates an Informix table with a spatial column, it also creates an SE_ROW_ID
integer column. The SE_ROW_ID column is required by ArcSDE client applications to keep
track of selection sets; more specifically it is used in ArcSDE log files.

ArcSDE adds a record to the GEOMETRY_COLUMNS table whenever it creates a feature
class in an Informix database. Applications using the Informix Spatial DataBlade are
responsible for inserting a record into the GEOMETRY_COLUMNS table each time they add
a spatial column to the database.

NAME DATA TYPE NULL?

f_table_catalog varchar(32) NOT NULL

f_table_schema varchar(32) NOT NULL

f_table_name varchar(128) NOT NULL

f_geometry_column varchar(128) NOT NULL

storage_type integer NULL

geometry_type integer NOT NULL

coord_dimension integer NULL

srid integer NOT NULL

Geometry_columns table schema

The GEOMETRY_COLUMNS table stores a record for each geometry column in the
database.

The datatype for each column is defined below.

� f_table_catalog (SE_STRING_TYPE)—The database in which the geometry column’s
table is stored.

� f_table_schema (SE_STRING_TYPE)—The owner of the geometry column’s table.

� f_table_name (SE_STRING_TYPE)—The geometry column’s table name.

� f_geometry_column (SE_STRING_TYPE)—The name of the geometry column.

Appendix C Informix Spatial DataBlade geometry types 113

� storage_type (SE_INTEGER_TYPE)—This is an OGC required field that is not used by
ArcSDE.

� geometry_type (SE_INTEGER_TYPE)—The geometry type code. ArcSDE inserts the
following values into this field:

Geometry Type Code Geometry Type

0 ST_Geometry

1 ST_Point

3 ST_LineString

5 ST_Polygon

7 ST_MultiPoint

9 ST_MultiLineString

11 ST_MultiPolygon

� coord_dimension (SE_INTEGER_TYPE)—This is an OGC required field that is not used
by ArcSDE.

� srid (SE_INTEGER_TYPE)—The geometry column’s spatial reference system. This is a
foreign key to the SRID column of the SPATIAL_REFERENCES table.

Creating a spatial index

Spatial columns contain two-dimensional geographic data, and applications querying those
columns require an index strategy that will quickly identify all geometries that lie within a given
extent. For this reason the Informix Spatial DataBlade provides support for building a spatial
index called an R-tree spatial index.

The R-tree index differs from the traditional hierarchical btree index provided by the Informix
Dynamic Server software.

The btree index cannot be applied to a spatial column because the two-dimensional
characteristic of the spatial column requires an R-tree index. For the same reason, you can’t
apply R-tree indexes to a nonspatial column or a composite column.

The R-tree index’s ‘create index’ syntax includes the additional ‘using rtree’ clause to create an
R-tree index rather than a btree index. The full syntax is
create index <index> on <table> (<spatial column> ST_Geometry_Ops) using rtree
(<parameters>) <index options>;

114 ArcSDE Configuration and Tuning Guide for Informix

The ST_Geometry_Ops is the Informix Spatial DataBlade operator class. ST_Geometry_Ops
manages the R-tree index.

ArcSDE creates a spatial index when a feature class is first created and when it is switched from
load_only_io mode to normal_io mode. The spatial index is created with default parameter
bottom_up_build = ‘yes’ and no index options.

You do not need to ever tune the spatial index for performance since this is all handled through
the R-TREE index. Therefore, you will never have to experiment with the spatial index by
trying different cell sizes and different grid level configurations. ArcSDE for Informix does not
require specifying a spatial index or defining spatial grid sizes. You can completely ignore the
"-g" Spatial Index flag in all ArcSDE client executables, i.e.,

shp2sde -o create -l <table,column> [-V <version_name>] -f <shape_file> [-I] [Spatial_Index]
[{-R <SRID> | [Spatial_Ref_Opts]}] [-S <layer_description_str>] [-v] [-e <entity_mask>] [-k
<config_keyword>] [-M <minimum_ID>] [-a {none | all | file=<file_name>}] [-r
<reject_shpfile>] [-c <commit_interval>] [-i <service>] [-s <server_name>] [-D <database>] -u
<DB_User_name> [-p <DB_User_password>]

Where [Spatial_Index] := [-g {<grid_sz0>[,<grid_sz1>[,<grid_sz2>]]
|GRID,<grid_sz0>[,<grid_sz1>[,<grid_sz2>]] |DBTUNE |NONE |RTREE
|FIXED,<sdo_level> |HYBRID,<sdo_level>,<sdo_num_tiles>}]

Setting the "-g" flag will not hurt anything but the "-g" flag is ignored for ArcSDE for Informix
and therefore will not be used. Nor is it ever necessary.

Updating statistics

The Informix optimizer will not use the R-tree index unless the statistics on the table are
up-to-date. If the R-tree index is created after the data has been loaded, the statistics are
up-to-date and the optimizer will use the index. However, if the index is created, and data is
loaded afterwards, the optimizer will not use the R-tree index because the statistics will be out
of date. To update the statistics use the update statistics Informix SQL statement.
update statistics for table <table_name>

Spatial DataBlade data types
The Oxford American Dictionary defines the noun ‘geometry’ as “the branch of mathematics
dealing with the properties of and relations of lines, angles, surfaces, and solids.” On August
11, 1997, the OGC, in its publication of OpenGIS Features for ODBC (SQL) Implementation
Specification, coined another definition for the noun geometry. The word was selected to define
the geometric features that, for the past millennium or more, cartographers have used to map
the world. Typically, points represent an object at a single location, linestrings represent a linear

Appendix C Informix Spatial DataBlade geometry types 115

characteristic, and polygons represent a spatial extent. A very abstract definition of the Open
GIS noun geometry might be “a point or aggregate of points symbolizing a feature on the
ground”. This definition, however, fails to describe the rich set of properties and functionality
associated with geometry.

To understand geometry in this context it is easier to describe it as it has been implemented
within the Informix Spatial DataBlade as a UDT, and like all UDTs in an object relational
system, it has a unique set of properties and methods.

ST_Geometry columns as a data type allow you to define columns that store spatial data. The
ST_Geometry data type itself is an abstract noninstantiable superclass, the subclasses of which
are instantiable. An instantiated data type is one that can be defined as a table column and have
values of its type inserted into it. A column can be defined as type ST_Geometry, but
ST_Geometry values cannot be inserted into it since they cannot be instantiated. Only the
subclass values can be inserted into this column because only they can be instantiated.
Therefore, the ST_Geometry data type can accept and store any of its subclasses, while its
subclass data types can only accept their own values.

Throughout the remainder of this document the term geometry or geometries collectively refers
to the superclass ST_Geometry data type and all of its subclass data types. Whenever it is
necessary to specify the geometry superclass directly, it will be referred to as the ST_Geometry
superclass or the ST_Geometry data type.

ST_Geometry

ST_Point

ST_LineString

ST_Curve GeometryCollectionST_Surface

ST_Polygon

ST_MultiCurve

ST_MultiLineString

ST_MultiSurface

ST_MultiPolygon

ST_MultiPoint

116 ArcSDE Configuration and Tuning Guide for Informix

Figure C.1 The hierarchy of the ST_Geometry datatype is divided into the subtypes ST_Point, ST_Curve,
and ST_Surface simple types and the geometry collections ST_MultiSurface, ST_MultiCurve, and
ST_MultiPoint. ST_LineString is the subtype of ST_Curve. ST_Polygon is the subtype of ST_Surface.
ST_MultiPolygon is the subtype of ST_MultiSurface. ST_MultiLineString is the subtype of ST_MultiCurve.

Geometry properties

Each subclass inherits the properties of the ST_Geometry superclass but also has properties of
its own. Functions that operate on the ST_Geometry data type will accept any of the subclass
data types. However, some functions have been defined at the subclass level and will only
accept certain subclasses’ data types.

Interior, boundary, exterior

All geometries occupy a position in space defined by its interior, boundary, and exterior. The
exterior of a geometry is all space not occupied by the geometry. The boundary of a geometry
serves as the interface between its interior and exterior. The interior is the space occupied by
the geometry. The subclass inherits the interior and exterior properties directly; however, the
boundary property differs for each.

The ST_Boundary Spatial DataBlade function takes an ST_Geometry and returns an
ST_Geometry that represents the source ST_Geometry’s boundary.

Simple or nonsimple

Some subclasses of ST_Geometry (ST_LineStrings, ST_MultiPoints, and
ST_MultiLineStrings) are either simple or nonsimple. They are simple if they obey all
topological rules imposed on the subclass and nonsimple if they “bend” a few. An
ST_LineString is simple if it does not intersect its interior. An ST_MultiPoint is simple if none
of its elements occupy the same coordinate space. An ST_MultiLineString is simple if none of
its element’s interiors are intersected by its own interior.

The Spatial DataBlade ST_IsSimple predicate function takes an ST_Geometry and returns
t (TRUE) if the ST_Geometry is simple and f (FALSE) otherwise.

Empty or not empty

A geometry is empty if it does not have any points. An empty geometry has a NULL envelope,
boundary, interior, and exterior. An empty geometry is always simple and can have
z-coordinates or measures. Empty linestrings and multilinestrings have a 0 length. Empty
polygons and multipolygons have a 0 area.

Appendix C Informix Spatial DataBlade geometry types 117

The Spatial DataBlade ST_IsEmpty predicate function takes an ST_Geometry and returns
t (TRUE) if the ST_Geometry is empty and f (FALSE) otherwise.

Number of points

A geometry can have zero or more points. A geometry is considered empty if it has zero points.
The point subclass is the only geometry that is restricted to zero or one point; all other
subclasses can have zero or more.

Envelope

The envelope of a geometry is the bounding geometry formed by the minimum and maximum
(x,y) coordinates. The envelopes of most geometries form a boundary rectangle; however, the
envelope of a point is the point since its minimum and maximum coordinates are the same, and
the envelope of a horizontal or vertical linestring is a linestring represented by the boundary
(the endpoints) of the source linestring.

The Spatial DataBlade ST_Envelope function takes an ST_Geometry and returns an
ST_Geometry that represents the source ST_Geometry’s envelope.

Dimension

A geometry can have a dimension of 0, 1, or 2.

The dimensions are

0—has neither length nor area

1—has a length

2—contains area

The point and multipoint subclasses have a dimension of 0. Points represent zero-dimensional
features that can be modeled with a single coordinate, while multipoints represent data that
must be modeled with a cluster of unconnected coordinates.

The subclasses linestring and multilinestring have a dimension of 1. They store road segments,
branching river systems, and any other features that are linear in nature.

Polygon and multipolygon subclasses have a dimension of 2. Forest stands, parcels, water
bodies, and other features whose perimeter encloses a definable area can be rendered by either
the polygon or multipolygon data type.

118 ArcSDE Configuration and Tuning Guide for Informix

Dimension is important not only as a property of the subclass but also in playing a part in
determining the spatial relationship of two features. The dimension of the resulting feature or
features determines whether or not the operation was successful. The dimension of the features
is examined to determine how they should be compared.

The Spatial DataBlade ST_Dimension function takes an ST_Geometry and returns its
dimension as an integer.

Z-coordinates

Some geometries have an associated altitude or depth. Each of the points that form the
geometry of a feature can include an optional z-coordinate that represents an altitude or depth
normal to the earth’s surface.

The Spatial DataBlade SE_Is3D predicate function takes an ST_Geometry and returns t
(TRUE) if the function has z-coordinates and f (FALSE) otherwise.

Measures

Measures are values assigned to each coordinate. The value represents anything that can be
stored as a double-precision number.

The Spatial DataBlade SE_IsMeasured predicate function takes a geometry and returns
t (TRUE) if it contains measures and f (FALSE) otherwise.

Spatial reference system

The spatial reference system identifies the coordinate transformation matrix for each geometry.

The Spatial DataBlade ST_SRID function takes an ST_Geometry and returns its spatial
reference identifier as an integer.

Instantiable subclasses
The ST_Geometry data type is not instantiable but instead must store its instantiable subclasses.
The subclasses are divided into two categories: the base geometry subclasses and the
homogeneous collection subclasses. The base geometries include ST_Point, ST_LineString,
and ST_Polygon, while the homogeneous collections include ST_MultiPoint,
ST_MultiLineString, and ST_MultiPolygon. As the names imply, the homogeneous collections
are collections of base geometries. In addition to sharing base geometry properties,
homogeneous collections have some of their own properties as well.

Appendix C Informix Spatial DataBlade geometry types 119

The Spatial DataBlade ST_GeometryType function takes an ST_Geometry and returns the
instantiable subclass in the form of a character string. The Spatial DataBlade
ST_NumGeometries function takes a homogeneous collection and returns the number of base
geometry elements it contains. The Spatial DataBlade ST_GeometryN function takes a
homogeneous collection and an index and returns the nth base geometry.

ST_Point

An ST_Point is a zero-dimensional geometry that occupies a single location in coordinate
space. An ST_Point has a single x,y coordinate value. An ST_Point is always simple; has a
NULL boundary; and is used to define features such as oil wells, landmarks, and elevations.

Spatial DataBlade functions that operate solely on the ST_Point data type include ST_X,
ST_Y, SE_Z, and SE_M.

The ST_X function returns a point data type’s x-coordinate value as a double-precision
number.

The ST_Y function returns a point data type’s y-coordinate value as a double-precision
number.

The SE_Z function returns a point data type’s z-coordinate value as a double-precision number.

The SE_M function returns a point data type’s m-coordinate value as a double-precision
number.

ST_LineString

An ST_LineString is a one-dimensional object stored as a sequence of points defining a linear
interpolated path. The ST_LineString is simple if it does not intersect its interior. The endpoints
(the boundary) of a closed ST_LineString occupy the same point in space. An ST_LineString is
a ring if it is both closed and simple. As well as the other properties inherited from the
superclass ST_Geometry, ST_LineStrings have length. ST_LineStrings are often used to define
linear features such as roads, rivers, and power lines.

The endpoints normally form the boundary of an ST_LineString unless the ST_LineString is
closed, in which case the boundary is NULL. The interior of an ST_LineString is the connected
path that lies between the endpoints, unless it is closed, in which case the interior is continuous.

Spatial DataBlade functions that operate on ST_LineStrings include ST_StartPoint,
ST_EndPoint, ST_PointN, ST_Length, ST_NumPoints, ST_IsRing, and ST_IsClosed.

120 ArcSDE Configuration and Tuning Guide for Informix

The ST_StartPoint function takes an ST_LineString and returns its first point.

The ST_EndPoint function takes an ST_LineString and returns its last point.

The ST_PointN function takes an ST_LineString and an index to an nth point and returns that
point.

The ST_Length function takes an ST_LineString and returns its length as a double-precision
number.

The ST_NumPoints function takes an ST_LineString and returns the number of points in its
sequence as an integer.

The ST_IsRing predicate function takes an ST_LineString and returns t (TRUE) if the
ST_LineString is a ring and f (FALSE) otherwise.

The ST_IsClosed predicate function takes an ST_LineString and returns t (TRUE) if the
ST_LineString is closed and f (FALSE) otherwise.

Examples of ST_LineString objects: (1) a simple nonclosed ST_LineString, (2) a nonsimple nonclosed
ST_LineString, (3) a closed simple ST_LineString and is therefore a ring, (4) a closed nonsimple
ST_LineString and is not a ring.

ST_Polygon

An ST_Polygon is a two-dimensional surface stored as a sequence of points defining its
exterior bounding ring and 0 or more interior rings. ST_Polygon, by definition, is always
simple. Most often ST_Polygon defines parcels of land, water bodies, and other features having
spatial extent.

(1) (2) (3) (4)

Appendix C Informix Spatial DataBlade geometry types 121

Examples of ST_Polygon objects: (1) an ST_Polygon whose boundary is defined by an exterior ring, (2) an
ST_Polygon whose boundary is defined by an exterior ring and two interior rings and the area inside the
interior rings is part of the ST_Polygon’s exterior, and (3) a legal ST_Polygon because the rings intersect at
a single tangent point.

The exterior and any interior rings define the boundary of an ST_Polygon, and the space
enclosed between the rings defines the ST_Polygon’s interior. The rings of an ST_Polygon can
intersect at a tangent point but never cross. In addition to the other properties inherited from the
superclass ST_Geometry, ST_Polygon has area.

Spatial DataBlade functions that operate on ST_Polygon include ST_Area, ST_ExteriorRing,
ST_NumInteriorRing, ST_InteriorRingN, ST_Centroid, and ST_PointOnSurface.

The ST_Area function takes an ST_Polygon and returns its area as a double-precision number.

The ST_ExteriorRing function takes an ST_Polygon and returns its exterior ring as an
ST_LineString.

The ST_NumInteriorRing takes an ST_Polygon and returns the number of interior rings that it
contains.

The ST_InteriorRingN function takes an ST_Polygon and an index and returns the nth interior
ring as an ST_LineString.

The ST_Centroid function takes an ST_Polygon and returns an ST_Point that is the center of
the ST_Polygon’s envelope.

The ST_PointOnSurface function takes an ST_Polygon and returns an ST_Point that is
guaranteed to be on the surface of the ST_Polygon.

(1 (2 (3

122 ArcSDE Configuration and Tuning Guide for Informix

ST_MultiPoint

An ST_MultiPoint is a collection of ST_Points and, just like its elements, it has a dimension of
0. An ST_MultiPoint is simple if none of its elements occupy the same coordinate space. The
boundary of an ST_MultiPoint is NULL. ST_MultiPoints define aerial broadcast patterns and
incidents of a disease outbreak.

ST_MultiLineString

An ST_MultiLineString is a collection of ST_LineStrings. ST_MultiLineStrings are simple if
they only intersect at the endpoints of the ST_LineString elements. ST_MultiLineStrings are
nonsimple if the interiors of the ST_LineString elements intersect.

The boundary of an ST_MultiLineString is the nonintersected endpoints of the ST_LineString
elements. The ST_MultiLineString is closed if all its ST_LineString elements are closed. The
boundary of an ST_MultiLineString is NULL if all the endpoints of all the elements are
intersected. In addition to the other properties inherited from the superclass ST_Geometry,
ST_MultiLineStrings have length. ST_MultiLineStrings are used to define streams or road
networks.

Examples of ST_MultiLineStrings: (1) a simple ST_MultiLineString whose boundary is the four endpoints of
its two ST_LineString elements; (2) a simple ST_MultiLineString because only the endpoints of the
ST_LineString elements intersect. The boundary is two nonintersected endpoints; (3) a nonsimple
ST_MultiLineString because the interior of one of its ST_LineString elements is intersected. The boundary of
this ST_MultiLineString is the three nonintersected endpoints; (4) a simple nonclosed ST_MultiLineString. It

(1) (2) (3)

(4) (5)

Appendix C Informix Spatial DataBlade geometry types 123

is not closed because its element ST_LineStrings are not closed. It is simple because none of the interiors of
any of the element ST_LineStrings intersect; (5) a simple closed ST_MultiLineString. It is closed because all
its elements are closed. It is simple because none of its elements intersect at the interiors.

Spatial DataBlade functions that operate on ST_MultiLineStrings include ST_Length and
ST_IsClosed.

The ST_Length function takes an ST_MultiLineString and returns the cumulative length of all
its ST_LineString elements as a double-precision number.

The ST_IsClosed predicate function takes an ST_MultiLineString and returns t (TRUE) if the
ST_MultiLineString is closed and f (FALSE) otherwise.

ST_MultiPolygon

The boundary of an ST_MultiPolygon is the cumulative length of its elements’ exterior and
interior rings. The interior of an ST_MultiPolygon is defined as the cumulative interiors of its
element ST_Polygons. The boundary of an ST_MultiPolygon’s elements can only intersect at a
tangent point. In addition to the other properties inherited from the superclass ST_Geometry,
ST_MultiPolygons have area. ST_MultiPolygons define features such as a forest stratum or a
noncontiguous parcel of land such as a Pacific island chain.

Examples of ST_MultiPolygon: (1) an ST_MultiPolygon with two ST_Polygon elements. The boundary is
defined by the two exterior rings and the three interior rings; and (2) an ST_MultiPolygon with two
ST_Polygon elements. The boundary is defined by the two exterior rings and the two interior rings. The two
ST_Polygon elements intersect at a tangent point.

Spatial DataBlade functions that operate on ST_MultiPolygons include ST_Area,
ST_Centroid, and ST_PointOnSurface.

The ST_Area function takes an ST_MultiPolygon and returns the cumulative ST_Area of its
ST_Polygon elements as a double-precision number.

(1) (2)

124 ArcSDE Configuration and Tuning Guide for Informix

The ST_Centroid function takes an ST_MultiPolygon and returns an ST_Point that is the center
of an ST_MultiPolygon’s envelope.

The ST_PointOnSurface function takes an ST_MultiPolygon and returns an ST_Point that is
guaranteed to be normal to the surface of one of its ST_Polygon elements.

125

Index

A

American National Standards
Institute (ANSI) 85

ArcCatalog 3, 42, 71, 72, 77, 80,
81

ArcGIS Desktop 64, 71, 84
ArcInfo 72
ArcInfo Workstation 71
ArcMap 3, 74
ArcSDE service 3
ArcStorm libraries 76
ArcToolbox 71, 72, 77, 79, 85
ArcView GIS 3.2 71

B

backup and recovery 5, 88

C

CAD Client 71
CLIENT_LOCALE 86
Compress database 80
configuration keyword 72
cov2sde 70, 75
coverage 76

D

DB_LOCALE 86
dbspaces

creating 19, 37
root 15, 33
system 13, 30
temporary 17, 34

DBTUNE
configuration keyword 2
dbtune.sde file 2
storage parameters 2, 50

DBTUNE configuration keywords
data_dictionary 59
defaults 58
logfile_defaults 64
network_defaults 67
Topology 60

DBTUNE storage parameters

a_index_rowid 55
a_index_stateid 55
a_index_user 56
a_rtree 55
a_storage 55
aux_index_composite 57
aux_storage 57
b_index_rowid 54
b_index_user 54
b_rtree 55
b_storage 53, 54
blk_index_composite 57
blk_storage 57
bnd_index_composite 56
bnd_index_id 57
bnd_storage 56
d_index_deleted_at 56
d_index_state_rowid 56
d_storage 56
ras_index_id 56
ras_storage 56
ui_network_text 63
ui_text 63

DBTUNE table 2, 50
dbtune.sde file 51, 64
disk I/O contention 12, 30

G

gsrvr process 3

I

Informix
NLS_LANG 84
physical log 15, 32

Informix Dynamic Server
starting 11

Informix instance 1

L

Librarian libraries 76
load-only I/O mode 73, 76
locale 84
LRU queues 51

M

MapObjects 71
multiversioned 74

N

national language support 3
normal I/O mode 74, 77

O

onconfig file 7, 24
onconfig parameters

aff_nprocs 44
aff_sproc 44
alarmprogram 28
buffers 8, 24, 49
cleaners 9, 26, 51
dbserveraliases 28
dbservername 28
dbspacetemp 17, 35
dumpdir 10, 26
logbuff 52
logsize 8, 25
logsmax 8, 15, 25, 33
lru_max_dirty 51
lru_min_dirty 51
ltapedev 11, 28
msgpath 28
multiprocessor 10, 27, 44
nettype 11, 29, 46
noage 44
numaiovps 44
numcpuvps 44
physbuff 52
physdbs 15, 32
physfile 15, 32
ra_pages 9, 26
ra_threshhold 9, 26
residency 53
resident 10, 27
rootpath 27
single_cpu_vp 44
stacksize 9, 26
tapedev 10, 28

126 ArcSDE Configuration and Tuning Guide for Informix

vpclass 44
oninit 35
onmode 16, 33, 34
onparams 16, 33, 34
onspaces 21, 39
onstat 16, 34, 51
ontape 16, 33
original equipment manufacturer

85

P

page cleaners 51
privileges

granting 75

R

raster columns 77

S

sbspace 18

sbspaces
creating 19, 37

SDE_LOGFILE_DATA 63
SDE_LOGFILES 63
sde2cov 78
sde2shp 78
sde2tbl 78
sdedbtune 2
sdeexport 78
sdegroup 71
SDEHOME 51, 69
sdeimport 70, 75, 76
sdelayer 70, 73, 75
sdesetupinfx 2, 51, 59
sdetable 70, 72, 78

update_dbms_stats 42, 43
SERVER_LOCALE 85
shp2sde 70, 74, 75, 76
shpinfo 76
statistics 42
syssbspace 18

T

TABLE_REGISTRY table 55
tbl2sde 70
three-tiered architecture 3
tuning CPU 44
tuning memory 49

U

update statistics 43

V

virtual processor
no yield option 48
priority aging 47
processor affinity 48

virtual processors 45

	Contents
	Chapter 1 - Getting started
	Tuning and configuring the Informix instance
	Arranging your data
	DBTUNE storage parameters

	Creating spatial data in an Informix database
	Connecting to Informix
	National language support
	Backup and recovery

	Chapter 2 - Essential Informix configuring and tuning
	How much time should you spend tuning?
	Updating the onconfig file
	Naming the onconfig file
	Some important onconfig parameters
	BUFFERS
	LOGSIZE
	LOGSMAX
	CLEANERS
	STACKSIZE
	RA_PAGES
	RA_THRESHOLD
	DUMPDIR
	RESIDENT

	System parameters that must be adjusted prior to initialization
	TAPEDEV
	LTAPEDEV
	NETTYPE

	Restarting the Informix Dynamic Server
	Restarting the Informix service

	Tuning disk I/O contention
	RAID systems
	Installing the Informix software
	Creating the system dbspaces
	Device Files

	Moving the physical log out of the root dbspace
	Moving the logical logs out of the root dbspace
	Setting up the temporary dbspace
	Creating the default smart large object dbspace
	Allocating enough metadata within a smart large object sbspace

	Using smart large object sbspaces
	Smart large object sbpace at ArcSDE 8.3

	Arranging your data
	Creating the dbspaces and sbspaces
	Separate indexes onto a different disk drive from the tables they index
	Separate smart large objects from their associated spatial tables
	Place high-use tables in the middle disk drive partitions to minimize disk head movement
	Separate large high-use tables on different disk drives
	Group smaller tables together into dbspaces by usage
	Optimize extent sizes
	Assign individual dbspaces to large tables

	Using onspaces to create dbspaces and sbspaces
	Dbspaces
	Sbspaces

	UNIX Systems
	Updating the onconfig file
	Naming the onconfig file
	Some important onconfig parameters
	BUFFERS
	LOGSIZE
	LOGSMAX
	CLEANERS
	STACKSIZE
	RA_PAGES
	RA_THRESHOLD
	DUMPDIR
	RESIDENT

	System parameters that must be adjusted prior to initialization
	ROOTPATH
	MSGPATH
	ALARMPROGRAM
	TAPEDEV
	LTAPEDEV
	DBSERVERNAME
	DBSERVERALIASES
	NETTYPE

	Restarting the INFORMIX server

	Tuning disk I/O contention
	RAID systems
	Installing the Informix software
	Creating the system dbspaces
	Moving the physical log out of the root dbspace
	Moving the logical logs out of the root dbspace
	Setting up the temporary dbspace
	Creating the default smart large object dbspace
	Allocating enough metadata within a smart large object sbspace

	Using smart large object sbspaces
	Smart large object space at ArcSDE 8.3

	Arranging your data
	Creating the dbspaces and sbspaces
	Separate indexes onto a different disk drive from the tables they index
	Separate smart large objects from their associated spatial tables
	Place high-use tables in the middle disk drive partitions to minimize disk head movement
	Separate large high-use tables on different disk drives
	Group smaller tables together into dbspaces by usage
	Optimize extent sizes
	Assign individual dbspaces to large tables

	Using onspaces to create dbspaces and sbspaces
	Dbspaces
	Sbspaces

	Updating Informix statistics
	Tuning CPU
	CPU and AIO virtual processor classes
	Network virtual processors
	Priority aging
	Processor affinity
	No yield option

	Tuning memory
	Buffers
	LRU queues and page cleaners
	Logical log buffers
	Physical log buffers
	Residency

	Chapter 3 - Configuring DBTUNE storage parameters
	The DBTUNE table
	Editing the DBTUNE table
	Adding keywords to the DBTUNE table

	Using the DBTUNE table
	Selecting the configuration string
	Table parameters
	Index parameters

	Defining the storage parameters
	Meta parameters
	The business table storage parameter
	The business table index storage parameters
	Multiversioned table storage parameters
	Raster table storage parameters

	Arranging storage parameters by keyword
	DEFAULTS keyword
	Setting the system table DATA_DICTIONARY keyword
	The TOPOLOGY keyword
	The IMS METADATA keywords
	Changing the appearance of DBTUNE keywords in the ArcInfo user interface
	Adding a comment to a configuration keyword
	LOGFILE keywords
	Network class composite configuration keywords
	The NETWORK_DEFAULTS configuration keyword

	Informix default parameters
	Editing the storage parameters
	Converting SDE 3.x storage parameters to ArcSDE 8.3 storage parameters
	The complete list of ArcSDE storage parameters

	Chapter 4 - Managing tables, feature classes, and raster columns
	Data creation
	Creating and populating a feature class
	Creating a feature class “from scratch”
	Creating a business table
	Adding a feature class
	Switching to load-only I/O mode
	Inserting records into the feature class
	Switching the table to normal I/O mode
	Versioning your data
	Granting privileges on the data

	Creating and loading feature classes from existing data
	shp2sde
	cov2sde
	sdeimport

	Appending data to an existing feature class

	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications
	Loading data
	Versioning your data
	Compressing the geodatabase
	Granting privileges
	Creating a raster column with ArcCatalog

	Chapter 5 - National language support
	Creating an Informix database with a specific language locale
	Setting the NLS_LANG variable on the client
	Setting the NLS_LANG variable for Windows NT/2000 clients

	Configuring the Informix server locale
	Configuring the Informix locale for ArcSDE
	Setting the locale for ArcSDE

	Chapter 6 - Backup and recovery
	Data recovery system
	What is a Dynamic Server recovery system?
	What is an archive?
	What is a logical-log backup?
	What is a Dynamic server restore?
	Physical and logical restores

	Backing up the database
	Recovering the database

	Appendix A - Estimating the size of your tables and indexes
	Estimating the size of your spatial tables
	Estimating the size of the spatial column
	Estimating the actual row size of the spatial table
	Estimating the metadata space requirement
	Estimating the storage space for the spatial table
	Estimating the smart large object storage space

	Estimating the size of your ArcSDE indexes

	Appendix B - Storing raster data
	Raster schema
	RASTER_COLUMNS table
	Business table
	Raster table (SDE_RAS_<rastercolumn_id>)
	Raster band table (SDE_BND_<rastercolumn_id>)
	Raster blocks table (SDE_BLK_<rastercolumn_id>)
	Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

	Creating a raster catalog

	Appendix C - Informix Spatial DataBlade geometry types
	How the Informix Spatial DataBlade works
	Adding records to the spatial reference table
	Creating feature classes in an Informix database
	Creating a spatial index
	Updating statistics

	Spatial DataBlade data types
	Geometry properties
	Interior, boundary, exterior
	Simple or nonsimple
	Empty or not empty
	Number of points
	Envelope
	Dimension
	Z-coordinates
	Measures
	Spatial reference system

	Instantiable subclasses
	ST_Point
	ST_LineString
	ST_Polygon
	ST_MultiPoint
	ST_MultiLineString
	ST_MultiPolygon

	Index

