
ArcGIS™ 8.3

ArcSDE® Configuration and Tuning Guide for Oracle®

Copyright © 1999, 2002 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected
under United States copyright law and the copyright laws of the given countries of origin and applicable
international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying or recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

The information contained in this document is subject to change without notice.

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, SDE, ArcView, ArcIMS, and MapObjects are trademarks of ESRI, registered in the United States
and certain other countries; registration is pending in the European Community. ArcInfo, ArcSDE®,
ArcCatalog, ArcMap, ArcToolbox, ArcStorm, ArcGIS, ArcEditor, ArcDoc, and Spatial Database Engine
are trademarks of ESRI. Other companies and products mentioned herein are trademarks or registered
trademarks of their respective trademark owners.

iii

Contents

Chapter 1 Getting started 1
Tuning and configuring the Oracle instance 1
Arranging your data 2
Creating spatial data in an Oracle database 3
Connecting to Oracle 3
National language support 4
Backup and recovery 4

Chapter 2 Essential Oracle configuring and tuning 5
How much time should you spend tuning? 5
Reducing disk I/O contention 5
Setting the Oracle initialization parameters 24
Enabling the optional Oracle startup trigger 28
Updating Oracle statistics 28

Chapter 3 Configuring DBTUNE storage parameters 31
The DBTUNE table 31
Arranging storage parameters by keyword 33
Defining the storage parameters 41
ArcSDE storage parameters for Oracle Spatial 50
Oracle default parameters 52
Editing the storage parameters 52
Converting previous versions of SDE storage parameters into the DBTUNE table 52
The complete list of ArcSDE 8.1 storage parameters 56

Chapter 4 Managing tables, feature classes, and raster columns 61
Data creation 61
Creating and populating raster columns 66
Creating views 67
Exporting data 67
Schema modification 67
Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications 67
Registering a business table 72

Chapter 5 Connecting to Oracle 75
Creating the Net8 listener service 76
Starting the Net8 listener service 78
Net8 Client installation and configuration 79
Configuring ArcSDE applications for Oracle direct connections 86
Connecting to an Oracle net service name or an ArcSDE service 87
Troubleshooting direct connection problems 89

iv ArcSDE Configuration and Tuning Guide for Oracle

Chapter 6 National language support 91
Oracle database character sets 91
Setting the NLS_LANG variable on the client 91

Chapter 7 Backup and recovery 93
Recording Database Changes 93
Database backup 97
Database recovery 99

Chapter 8 Replication 101
Setting up advanced replication 101
Setting up multimaster synchronous replication 103
Setting up read-only snapshot replication 109
Editing a replicated database with ArcMap 114
Using the Oracle replication manager 114

Appendix A Estimating the size of your tables and indexes 117
The business table 117
The feature table 118
The spatial index table 119
The version delta tables 119
The network tables 120
The raster data tables 123
The indexes 126

Appendix B Storing raster data 127
Raster schema 129
Creating a raster catalog 135

Appendix C ArcSDE compressed binary 137
Compressed binary 137
The spatial grid index 139
Creating tables with compressed binary schema 144
Referential integrity 145

Appendix D Oracle Spatial geometry type 147
What is Oracle Spatial? 147
How does ArcSDE use Oracle Spatial? 149
How does ArcSDE use existing Oracle Spatial tables? 152
Interoperability considerations 153

Index

 1

C H A P T E R 1

Getting started

Creating and populating a geodatabase is arguably a simple process,
especially if you use ESRI’s ArcCatalogTM or ArcToolboxTM to load the data.
So why is there a configuration and tuning guide? Well, while database
creation and data loading can be relatively simple, the resulting performance
may not be acceptable. It requires some effort to build a database that
performs optimally. Also, as an Oracle® user, you have some choices for
storing the geometry of your spatial data. This book provides instruction for
configuring the physical storage parameters of your data in the database
management system (DBMS) as well as providing information about the
available options you have to store the geometry. This book also provides
some important guidelines for configuring and tuning the Oracle instance
itself.

Tuning and configuring the Oracle instance
Building an efficient geodatabase involves properly tuning and configuring the Oracle
instance and proper arrangement and management of the database's tables and indexes.
Chapter 2, ‘Essential Oracle configuring and tuning’, teaches you how to do just that.

Chapter 2 lists the necessary steps to create a geodatabase. You will learn how to properly

• Create an Oracle database.

• Create the tablespaces that will store your tables and indexes.

• Tune the Oracle instance that will mount and open the database.

• Manage the optimization statistics of the tables and indexes after they have been created
and populated.

2 ArcSDE Configuration and Tuning Guide for Oracle

Arranging your data
Every table and index created in a database has a storage configuration. How you store your
tables and indexes affects your database's performance.

DBTUNE storage parameters
How is the storage configuration of the tables and indexes controlled? ArcSDETM reads
storage parameters from the DBTUNE table to define physical data storage parameters of
ArcSDE tables and indexes. The storage parameters are grouped into configuration keywords.
You assign configuration keywords to your data objects (tables and indexes) when you create
them from an ArcSDE client program.

Prior to ArcSDE 8.1, configuration keywords were stored in a dbtune.sde file maintained
under the ArcSDE etc directory. The dbtune.sde file is still used by ArcSDE 8.1 as the initial
source of storage parameters. When the ArcSDE 8.1 sdesetupora* command executes, the
configuration parameters are read from the dbtune.sde file and written into the DBTUNE
table.

It should also be noted that ArcSDE 8.1 has simplified the storage parameters. Rather than
matching each Oracle storage parameter with an ArcSDE storage parameter, the ArcSDE
storage parameters have evolved into configuration strings and represent the entire storage
configuration for a table or index. Pre-ArcSDE 8.1 storage parameters are automatically
converted to the new simpler ArcSDE 8.1 storage parameters. The ArcSDE storage parameter
holds all the Oracle storage parameters of an Oracle CREATE TABLE or CREATE INDEX
statement.

The sdedbtune command has been introduced at ArcSDE 8.1 to provide the ArcSDE
administrator with an easy way to maintain the DBTUNE table. The sdedbtune command
exports and imports the records of the DBTUNE table to a file in the ArcSDE etc directory.

The ArcSDE 8.1 installation creates the DBTUNE table. If the dbtune.sde file is absent or
empty, sdesetupora* creates the DBTUNE table and populates it with default configuration
keywords representing the minimum ArcSDE configuration.

In almost all cases, you will populate the table with specific storage parameters for your
database. Chapter 3, ‘Configuring DBTUNE storage parameters’, describes in detail the
DBTUNE table and all possible storage parameters and default configuration keywords.

Spatial data storage choices
The DBTUNE storage parameter GEOMETRY_STORAGE allows you to select from
three possible spatial column storage formats.

The three possible storage formats are:

• ArcSDE compressed binary with LONG RAW. The ArcSDE geometry is stored in a
‘LONG RAW’ column in a separate feature table. A business table's spatial column is a
foreign key reference to the records of the feature table. This is the default spatial storage
format for ArcSDE.

 Chapter 1 Getting started 3

• ArcSDE compressed binary with binary large object (BLOB). The schema of this storage
format is the same as the previous one except for the fact that the geometry is stored in
the BLOB data type.

• Oracle Spatial geometry type. Starting at Oracle8i this object-relational model extends
the database model to include an SDO_GEOMETRY type. Under this storage format, the
spatial column is an SDO_GEOMETRY data type, and no foreign key reference to
another table storing a geometry column is required.

These spatial storage choices are discussed more fully in this book.

Appendix C, ‘ArcSDE compressed binary’, describes the ArcSDE compressed binary for
both LONG RAW and BLOB.

Appendix D, ‘Oracle Spatial geometry type’, describes the Oracle Spatial storage format
supported by ArcSDE.

Creating spatial data in an Oracle database
ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provided the
easiest method for creating spatial data in an Oracle database. With these tools you can
convert existing ESRI® coverages and shapefile format into ArcSDE feature classes. You can
also import an existing ArcSDE export file containing the data of a business table, feature
class, or raster column.

Multiversioned ArcSDE data can be edited directly with either the ArcCatalog or ArcMapTM
GUI.

An alternative approach to creating spatial data in an Oracle database is to use the
administration tools provided with ArcSDE.

Chapter 4, ‘Managing tables, feature classes, and raster columns’, describes the methods used
to create and maintain spatial data in an Oracle database.

Connecting to Oracle
Starting at ArcSDE for Oracle8i™ there are two different ways to connect to the Oracle
instance. ArcSDE clients can either connect to the ArcSDE service, or they may now connect
directly to the Oracle instance.

Under the traditional ArcSDE three-tiered architecture, the ArcSDE client connects to the
ArcSDE service, and the ArcSDE service spawns a dedicated gsrvr process that connects to
the Oracle instance. The gsrvr process brokers the spatial data between the ArcSDE client and
the Oracle instance. The ArcSDE service and the gsrvr processes typically reside on the
Oracle host machine, while ArcSDE clients are typically on remote machines.

Under the new two-tiered architecture, ArcSDE clients can connect directly to an Oracle
instance. Essentially the functionality of the gsrvr process has been moved into the ArcSDE
client. Typically, the ArcSDE clients run on remote desktop machines, while the Oracle
instance runs on a server class machine.

4 ArcSDE Configuration and Tuning Guide for Oracle

Note: The direct connection method can only be used starting at Oracle8i.

It is possible to use a combination of these two architectures to connect to an Oracle instance.
With a mixed configuration, some of the ArcSDE clients may be connected directly to the
Oracle instance, while others connect through an ArcSDE service.

Mixed two-tiered
and three-tiered

system

Two-tiered
system

Three-tiered
system

ArcSDE
clients

ArcSDE
clients

ArcSDE
clients

Oracle

ArcSDE
Service

Oracle

ArcSDE
Service

Oracle

Figure 1.1 With the traditional three-tiered architecture, the ArcSDE client applications connect to the
ArcSDE service, which in turn connects to the Oracle instance. Within the two-tiered architecture, the
ArcSDE client applications connect directly to the Oracle instance. Under a mixed architecture, some of the
ArcSDE client applications connect to the ArcSDE service, while others connect directly to the Oracle
instance.

National language support
If you intend to support a database that does not use the Oracle default 7-bit United States
ASCII English (US7ASCII) character set, you will have to take a few extra steps in creating
the Oracle database. You will also need to set the national language system environment of
the client applications.

Chapter 6, ‘National language support’, describes how to configure the Oracle database and
set up the application environment.

Backup and recovery
Developing and testing a backup strategy is every bit as important as the effort put into
creating it. A good backup strategy protects the database in the event of a media failure.

Chapter 7, ‘Backup and recovery’, lists the ArcSDE files that must be included as part of the
regular Oracle backup. In addition, suggested Oracle reference materials are listed for further
reading.

5

C H A P T E R 2

Essential Oracle configuring
and tuning

The performance of an ArcSDE service depends on how well you configure
and tune Oracle. This chapter provides basic guidelines for tuning an Oracle

database for use with an ArcSDE application server. It assumes that you have
a basic understanding of the Oracle data structures, such as tablespaces,
tables, and indexes, and that you are proficient with Structured Query
Language (SQL). We encourage you to refer to Oracle’s extensive
documentation, in particular Oracle Server Administrator’s Guide, Oracle
Concepts Guide, and Oracle Server Tuning, for your appropriate Oracle
release.

How much time should you spend tuning?
The appreciable difference between a well-tuned database and one that is not depends on
how it is used. A database created and used by a single user does not require as much tuning
as a database that is in constant use by many users. The reason is quite simple—the more
people using a database, the greater the contention for its resources.

By definition, tuning is the process of sharing resources among users by configuring the
components of a database to minimize contention and remove bottlenecks. The more people
you have accessing your databases, the more effort is required to provide access to a finite
resource.

A well-tuned Oracle database makes optimum use of available central processing unit (CPU)
time and memory while minimizing disk input/output (I/O) contention. Database
administrators approach this task knowing that each additional hour spent will often return a
lesser gain in performance. Eventually, they reach a point of diminishing returns, where it is
impractical to continue tuning; instead, they continue to monitor the server and address
performance issues as they arise.

Reducing disk I/O contention
Disk I/O contention provides the most challenging performance bottleneck. Other than
purchasing faster disk drives and additional network cards, the solution to this problem lies in

6 ArcSDE Configuration and Tuning Guide for Oracle

minimizing disk I/O and balancing it throughout the file system—reducing the possibility of
one process waiting for another to complete its I/O request. This is often referred to as
“waiting on I/O”.

Creating a database using the Oracle installer
Before installing Oracle and creating the database, decide where to position the software and
the files of the Oracle database. The Oracle installer program will request this information.

If you have already installed Oracle and created your database files, you should still read the
sections that follow. Although it involves more effort, you can move the Oracle database files
after they have been created.

Defining the database’s components and their size
The physical components of an ArcSDE service and the underlying Oracle database, as they
exist on any given file system, include the ArcSDE and Oracle software and all of the
physical files (data files, redo log files, and control files) of the Oracle database. Each of the
components is described below.

Software

The software includes both Oracle and ArcSDE. The ArcSDE software occupies
approximately 32 MB of space. Oracle software can occupy different amounts of disk space
depending on the version of Oracle and which components you choose to install. Please see
your Oracle installation notes for further details.

Control files

The control files maintain an inventory of an Oracle database's overall physical architecture.
If they are all lost or destroyed, you must recover the database from your last full backup.
During the creation of the database, create at least three control files on different disk drives.
If a disk containing a control file fails, the Oracle server must be shutdown. After the disk
drive has been repaired, use the operating system copy command to copy another control file
to the restored location. Starting at Oracle8i, control files are more dynamic and initially
require about 4 MB of disk space and can grow to more than 10 MB depending on the
activity of your database.

The initialization parameter CONTROL_FILE_RECORD_KEEP_TIME controls the size of
the control files. By default, this parameter is set to 7—instructing Oracle to overwrite its
reusable section every seven days. For more information on initialization parameters, refer to
‘Setting the Oracle initialization parameters’ later in this chapter.

Online redo log files

The online redo log files record the changes made to the database. Oracle requires a database
to have at least three online redo log file groups present. Our analysis has found that for
ArcGIS™ Desktop applications, the Oracle server performs reliably when the Oracle
database has at least three online redo log file groups present.

An Oracle database that receives regular edits (inserts, updates, or deletes) has highly active
online redo log files. Writes to the current online redo log file occur according to the
following schedule:

 Chapter 2 Essential Oracle configuring and tuning 7

• The log buffer becomes one third full.

• Any session issues a commit.

• Every three seconds if the data block buffer contains nonlogged dirty blocks.

It is important to physically separate the online redo log files from other data files that also
experience high rates of I/O. Whenever possible, create the log files on their own disk drives
or with other relatively static files.

Each time a log file fills up, a log file switch occurs and Oracle begins writing to the next log
file. (Remember that log files occurred in mirrored groups of one or more identical log files.
When a log switch occurs, all log files in a group are closed and all log files in the next group
are opened. Thus a log file switch really refers to switching all members of a log file group
to the next group.) A checkpoint must occur after each log file switch. Much happens within
the database during a checkpoint, so you will want to lower the frequency of this event. You
can and should force checkpoints to occur only after a log switch by setting the initialization
parameters LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT to 0.

The size and number of online redo log files in your database depend on the type of database.
This section will describe three basic kinds of databases:

• A newly created database.

• An OnLine Transaction Processing (OLTP) database. A multiversioned ArcSDE
database that is constantly edited while it is being queried is an example of an OLTP
database.

• A read-only database, meaning a database that, once loaded, receives changes at posted
intervals. An ArcIMS database is an example of a read-only database.

Establishing a new spatial database

With the vast amount of spatial data available as coverage and shapefile format, many spatial
databases are mass populated immediately following their initial creation. For this type of
database, create three log file groups each containing at least one very large redo log file. If
possible, place all log files on a disk drive separate from all other data files. In this situation, it
is not unreasonable to create log files in excess of 1 GB.

After you have finished loading the data, connect to Oracle as the database administrator
(DBA) and issue a checkpoint with ALTER SYSTEM CHECKPOINT. Then create new,
smaller log files. The size and number of the log files depend on what kind of database it will
become, either OLTP or read-only (see below).

When loading a database you may turn off archiving. You obtain a performance gain by
eliminating the periodic copy to the archive log destination following a log switch. It is just as
easy to recover the database from your load scripts and source data as it is to read the changes
stored in the archive logs. Remember to turn archiving on after the database has been loaded
if it is going to be an OLTP database.

8 ArcSDE Configuration and Tuning Guide for Oracle

OLTP database

For these types of databases, the redo log files should be large enough to delay the
checkpoint as much as possible. Redo log files should also be mirrored to provide maximum
protection against loss of transaction data.

If you are archiving the redo log files, create 3 to 10 redo log file groups having log files
about 50 MB in size. If possible, place them on disk drives that experience very low I/O. The
archive log file destination should also be placed on a separate and protected disk drive.

If you are not going to archive your log files, your total space given to redo log files should
be enough to store all log entries generated between full database backups. If you create 3
redo log file groups that are 250 MB each, you will have a total of 750 MB of redo log space.
If you experience a disk failure on a disk storing one of your Oracle data files, you may still
be able to recover the changes made since the last backup. It is recommended that you turn
archiving on following the initial creation of the database.

In either case, you should mirror the online redo log files. Place the mirror copy of the online
redo log file on a physically separate disk drive from the original copy.

Note: ESRI does not recommend that NOARCHIVELOG be the normal operating mode of
an OLTP database due to the risk of losing committed transactions in the event of media
failure.

Read-only databases

Some ArcSDE databases become relatively static following their creation. Such databases
receive posted intervals of changes over their lifetime. For this type of database, create three
50 MB online redo log files. Since they're used infrequently, positioning is not as critical as
for the other two types of databases just described.

Monitoring the log files

For all three types of databases, connect as the SYSTEM user and issue the following query
to determine if your online redo log files are large enough and if the checkpoint frequency is
occurring at a desirable interval:
SELECT TO_CHAR(FIRST_TIME,’dd-mon-yy hh24:mi:ss’) FROM V$LOGHIST;

This is an example of the output:
TO_CHAR(FIRST_TIME)

04-nov-99 13:15:14
04-nov-99 13:21:04
04-nov-99 13:27:04
04-nov-99 13:32:36

The example output shows the log switches are occurring at intervals greater than five
minutes, the interval at which Oracle issues the checkpoints. If the interval was less than five
minutes, the DBA should consider increasing the size of the online redo log files.

Modifying the online redo log files

To change the size of the log files, you must create new log file groups of the correct size,
make one of the new groups active, and drop the old log file groups. Remember, Oracle
requires that you always have at least three log file groups active.

 Chapter 2 Essential Oracle configuring and tuning 9

Note: ESRI recommends that you always mirror the online redo log file groups across
physically separate disk drives.

Follow this procedure using the SQL statements listed below.

1. Add the log file groups with their new size:
ALTER DATABASE ADD LOGFILE
('<path to log file member1>','<path to log file member2>', …)
SIZE <size>;

2. Determine which of the existing log file groups is current:
SELECT GROUP#,STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------

1 INACTIVE
2 CURRENT
3 INACTIVE

3. Issue the correct number of manual log switches required to make a new log file group
current:

ALTER SYSTEM SWITCH LOGFILE;

4. Remove the old log file groups, identifying them by their group numbers. You can get a
log file’s group number by querying the V$LOG table (see step 2):

ALTER DATABASE DROP LOGFILE GROUP <group number>;

Tablespace data files

The tablespace represents Oracle’s logical storage container. Each tablespace has assigned to
it one or more physical data files.

System tablespace

The system tablespace stores Oracle’s data dictionary. Each time Oracle parses a SQL
statement, it checks metadata concerning data objects referenced by the statement from the
data dictionary. Among other things, Oracle ensures the data objects actually exist and the
user has the proper privileges.

Place the SYSTEM tablespace on a disk of moderate activity. The default size of the
SYSTEM tablespace for Oracle8i is 175 MB.

Rollback tablespaces

The rollback tablespaces store rollback segments, which maintain the undo image needed to
roll back aborted transactions. Rollback segments also provide read consistency for queries
started prior to a transaction.

Determine the storage parameters of the rollback tablespace and the rollback segments by the
type of transactions using them. ArcSDE has three basic categories of transactions.

Loading transactions—The initial loading of data into an ArcSDE database generally
entails converting an existing storage format such as an ArcSDE coverage, shapefile, SDE
export file, or file format provided by a data vendor into an ArcSDE feature class.

10 ArcSDE Configuration and Tuning Guide for Oracle

To maximize throughput of the load process, ArcSDE provides a commit interval, allowing
you to batch inserts. The commit interval also serves to regulate transaction size. The commit
interval defaults to 5,000 features and is set with the ArcSDE giomgr.defs AUTOCOMMIT
parameter. Refer to Managing ArcSDE Services for more information on the
AUTOCOMMIT parameter. When loading data this interval uses approximately 2 MB of
rollback segment space. Therefore, we recommend setting the extent size of the rollback
segment to 2 MB when you are loading data into your database. Create a 50 MB rollback
tablespace and assign two rollback segments to that tablespace.

If more than two processes are used to load data, create an additional rollback tablespace on a
separate disk drive and create two rollback segments on it. The addition of the rollback
tablespace reduces contention for the rollback segment header:
create tablespace rbs ′<path to data file>′ size 50M extent management local
uniform size 2M;

create rollback segment ro1 tablespace rbs storage (minextents 10);

create rollback segment ro2 tablespace rbs storage (minextents 10);

Version edit transactions—The data maintenance transactions of the ArcGIS system tend to
be smaller than loading transactions. We recommend that the extent size of the rollback
segments assigned to these transactions be approximately 256 KB.

Create a 50 MB rollback tablespace and assign four rollback segments to that tablespace.
Each rollback segment can optimally support the concurrent transactions of six users, so this
configuration will support 24 concurrent users:
create tablespace rbs1 ′<path to data file>′ size 50M extent management local
uniform size 256K;

create rollback segment r01 tablespace rbs1 storage (minextents 20);

create rollback segment r02 tablespace rbs1 storage (minextents 20);

create rollback segment r03 tablespace rbs1 storage (minextents 20);

create rollback segment r04 tablespace rbs1 storage (minextents 20);

You may need to create additional rollback segment tablespaces depending on the number of
concurrent transactions you expect the database to support. Each transaction is assigned to a
rollback segment. A rollback segment may be assigned more than one transaction at a time.
Oracle evenly distributes transactions among the available rollback segments.

After the database has been started and is in use for a period of time, query the
V$ROLLSTAT table to determine if the transaction waits are greater than 4 percent of the
transaction gets:
select ((sum(waits) / sum(gets)) * 100) from v$rollstat;

If the result of this query is larger than 4 percent, you should create additional rollback
tablespaces on another disk drive and add more rollback segments to them.

Version compress transactions—Periodically, the ArcSDE administrator is required to
compress the states of a multiversioned database to reduce the number of records held by the
delta tables. To guarantee the consistency of the database, the transactions of the compress
operation are large, requiring an equally large transaction. Therefore, if you are maintaining a
multiversioned database you should create a separate rollback tablespace that is at least
300 MB in size and assign one rollback segment to it. Set the name of this rollback segment
in the COMPRESS_ROLLBACK_SEGMENT storage parameter of the DEFAULTS dbtune
configuration keyword. If this parameter is not set, the next available online rollback segment

 Chapter 2 Essential Oracle configuring and tuning 11

will be used. If the rollback segment is not large enough, the compress operation will fail
since the transaction will be forced to roll back.

The extent size of the version compress rollback segment should be set to 100 MB:
create tablespace big_o_rb_tspace ′<path to data file>′
size 301M extent management local uniform size 100M;

create rollback segment big_o_rbspace tablespace big_o_rb_tspace
storage (minextents 3);

ESRI recommends that you do not set the rollback segment optimal storage parameter. The
optimal parameter causes a rollback segment to shrink whenever it exceeds the optimal
threshold. Constantly shrinking the rollback segments will significantly degrade
performance.

As a rule, if you find that your transactions are rolled back because your rollback segments
fill up, you should reduce the size of your transactions or increase the size of the rollback
tablespaces rather than set the optimal parameter. Large transactions delay recovery, increase
overhead for queries that must access them for read consistency, and increase overhead for
other transactions that must allocate additional extents. ArcSDE allows you to limit the size
of your transactions by setting the giomgr.defs AUTOCOMMIT parameter.

Temporary tablespace

Oracle applications need temporary tablespace whenever they perform a sort that exceeds the
memory allocated to the sort area. The sort area is memory allocated to the user’s Program
Global Area (PGA) and is controlled by the init.ora parameter SORT_AREA_SIZE. Sorts
occur when indexes are created (Oracle:CREATE INDEX statement), statistics are generated
(ANALYZE statement), and queries require on-the-fly sorting (SELECT statements that
include table joins, ORDER BY clauses, and GROUP BY clauses).

When establishing a new database, the temporary tablespace will need to be large enough to
create the indexes. Oracle requires twice as much temporary space to create the indexes as it
does to store it. Therefore, determine the size of your largest index.

If you are using the ArcSDE compressed binary format to store your spatial data, the
S<n>_IX1 index on the spatial index table is likely to be your largest index. Refer to
Appendix A, ‘Estimating the size of your tables and indexes’, for information on determining
the size of your indexes.

If you are storing your spatial data as an Oracle Spatial data type, refer to Appendix A,
‘Tuning Tips and Sample SQL Scripts’, of the Oracle Spatial User's Guide and Reference
for more information on sizing temporary tablespace for the construction of the Oracle
Spatial data type indexes.

After the data has been loaded and the indexes created, temporary tablespace is used for data
sorts. Temporary tablespace is used when sorts exceed the PGA's sort area, which is allocated
according to the init.ora SORT_AREA_SIZE parameter.

The SORT_AREA_SIZE should be increased to perhaps as much as 100 MB during the
construction of a database, when it is needed to create large indexes and analyze tables.
During database construction, it is generally a single session that performs the work. If
multiple sessions are used to construct the database, the SORT_AREA_SIZE should be
scaled down to avoid memory contention.

12 ArcSDE Configuration and Tuning Guide for Oracle

After the database is ready for use, reduce the SORT_AREA_SIZE to the Oracle default
value of 64 KB if you are storing your spatial data as compressed binary.

The temporary tablespace can be mixed with other data files of higher I/O since there is a low
risk of disk I/O contention.

By default, the Oracle installation process creates the temporary tablespace stored in a data
file that has logging turned on. Since this tablespace holds temporary data, for which there is
no requirement to maintain an archive, drop the tablespace and re-create it with a tempfile
that has logging turned off.

Always create the temporary tablespace with the syntax:
CREATE TEMPORARY TABLESPACE <name> TEMPFILE '<path to temporary data file>'
SIZE 300M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 272K;

rather than the Oracle default syntax:
CREATE TABLESPACE <name> DATAFILE '<path to temporary data file>' SIZE 300M
TEMPORARY DEFAULT STORAGE (INITIAL 128K NEXT 128K MINEXTENTS 1 MAXEXTENTS 121
PCTINCREASE 0);

If you use the latter syntax, the temporary segments are logged and must be recovered in the
event of a media failure. The former (and preferred syntax) is created with locally managed
extents, which Oracle allocates more efficiently.

Set the extent size of the temporary tablespace to a multiple of the SORT_AREA_SIZE plus
the size of an Oracle data block. For example, if you have set your SORT_AREA_SIZE to
the Oracle default 64 KB, and you use the recommended 16 KB DB_BLOCK_SIZE, you
should set your temporary tablespace extents to either 272 KB, 336 KB, or 400 KB. Always
use an extent size that is at least four times larger than your SORT_AREA_SIZE plus a data
block. Doing so reduces the allocation of temporary extents.

ArcSDE system tablespaces

The ArcSDE system tablespaces store the ArcSDE and geodatabase system tables and
indexes created by the ArcSDE sdesetupora* command. The number and placement of the
tablespaces depend on what you intend to use the ArcSDE database for.

The placement of these tables and their indexes is controlled by the storage parameters of the
dbtune DATA_DICTIONARY configuration keyword. The DATA_DICTIONARY
keyword is used exclusively for the creation of the ArcSDE and geodatabase system tables.

Multiversioned databases that support ArcGIS OLTP applications have a highly active state-
tree. The state-tree maintains the states or the change history of all editing operations that
have occurred on tables and feature classes registered as multiversioned. Four ArcSDE
system tables—STATES, STATE_LINEAGES, MVTABLES_MODIFIED, and
VERSIONS—maintain the transaction information of the versioned database's state-tree. In
this type of environment these four tables and their indexes have their own
DATA_DICTIONARY configuration keyword storage parameters.

In an active multiversioned database, the STATES_LINEAGE table can easily grow to
between one and two million records, occupying between 26 and 52 MB of tablespace. The
STATES table is much smaller, storing between 5,000 to 10,000 records, occupying between
2 to 4 MB of tablespace. The MVTABLES_MODIFIED table typically has between 50,000
and 100,000 records occupying between 1 to 2 MB of tablespace. The VERSIONS table is
usually quite small with less than 100 rows occupying about 64 KB.

 Chapter 2 Essential Oracle configuring and tuning 13

For most applications you can probably create a tablespace for the ArcSDE system tables and
one for their indexes on different disk drives and set the DATA_DICTIONARY parameters
accordingly. For highly active editing ArcGIS applications, the STATES,
STATES_LINEAGE, and MVTABLES_MODIFIED tables and their indexes need to be
created in separate tablespaces and positioned across the file system to minimize disk I/O
contention.

If you are not using a multiversioned database, the aforementioned tables are dormant, in
which case the tables can be stored with the other ArcSDE system tables and indexes.

The remainder of the ArcSDE and geodatabase system tables store information relating to
schema changes. They are relatively small and have a low frequency of I/O. They should be
grouped together in two separate tablespaces—one for tables and one for indexes—and
positioned with other tablespaces of high activity.

To summarize, if you are creating an active multiversioned database, create a 70 MB
tablespace to store ArcSDE tables. On a separate disk drive create a 30 MB tablespace for the
tables indexes.

If you are not going to use a multiversioned database, reduce the extent sizes of the
STATE_LINEAGES, STATES, and MVTABLES_MODIFIED tables and their indexes to
40 KB. Create two 5-MB tablespaces on separate disk drives—one for the tables and one for
the indexes.

For more information about the DATA_DICTIONARY configuration keyword, see Chapter
3, ‘Configuring DBTUNE storage parameters’.

Business table and index tablespaces

The Oracle installation creates the USER tablespace as the default user tablespace. There is
no requirement by Oracle that you use the USER tablespace, and you may drop it if you
wish. If you are building a sizable, permanent spatial database, create tablespaces with names
reflecting the data they will store.

The B_STORAGE DBTUNE storage parameter holds business table storage parameters.

The 15 MB INDX tablespace created by the Oracle installation process can be used to store
indexes. However, for large spatial databases you will need to create index tablespaces whose
name and size reflect the indexes they store. You may drop the Oracle-generated INDX
tablespace if you do not intend to use it.

The B_INDEX_USER DBTUNE storage parameter holds the storage parameters of the
business table indexes that you create.

Arranging the database components
Minimizing disk I/O contention is achieved by balancing disk I/O across the file system—
positioning frequently accessed “hot” files with infrequently accessed “cold” files. Estimate
the size of all the database components and determine their relative rates of access. Position
the components given the amount of disk space available and the size and number of disk
drives. Diagramming the disk drives and labeling them with the components help keep track
of the location of each component. Have the diagram handy when you create the Oracle
database.

14 ArcSDE Configuration and Tuning Guide for Oracle

Establish a maximum data file size

Choose the maximum size of a data file. It is a good policy to set a maximum size limit for
your data files because doing so facilitates interchanging them. After the database has been in
use for some time and a “normal” pattern of usage has been established, heavily accessed
data files sharing the same disk drive need to be separated. They can only be interchanged
with medium- or low-accessed data files of a similar size (unless you have a lot of free space
on your disk drives).

A common maximum size is 512 MB, but with the advent of more advanced backup
technology, larger sizes are being adopted. Some operating systems have a maximum file size
of 2 GB, so check your operating system documentation for further details.

Separate tables from their indexes

Each time Oracle accesses the index to locate a row, it must then access the table to fetch the
referenced row. The disk head must travel between the index and the table if they are stored
on the same disk.

Whenever possible, store indexes and their corresponding tables in separate tablespaces, on
physically separate disk drives. Doing this eliminates disk head travel that occurs when the
data blocks of the table and its indexes are accessed at the same time.

Determine the size of the tables and indexes

To determine the sizes of tables and indexes stored in an ArcSDE database, refer to the
formulas listed in Appendix A, Estimating the size of your tables and indexes.

Establish the threshold data object size

As a rule, small data objects, whether they are tables or indexes, are stored together in the
same tablespace, while larger data objects are stored by themselves in their own tablespace.
Decide how large a data object must be before it requires its own tablespace. Generally, the
threshold data object size corresponds in part to the maximum data file size. Data objects
capable of filling the maximum size data file should be stored in their own tablespace. Data
objects that approach this limit should also be considered. Since each new tablespace requires
its own data file, you should strive to keep the number of tablespaces to a minimum to reduce
the number of data file headers that must be updated during a database checkpoint.

Separate the tables and indexes into those that require their own tablespaces and those that
will be grouped together. Never store tables and their indexes together in the same
tablespace.

Store small tables and indexes by access

Base the decision of which small tables to store together in the same tablespace on expected
access. Store tables of high access in one tablespace and tables of low access in another.
Doing so allows you to position the data files of the high-access tablespaces with low-access
data files. This same rule applies to indexes. They, too, should be divided by access.

Create tablespaces containing a single table or index according to the size of the table or
index they contain. A tablespace may be large enough that it requires several data files.
Therefore, if the maximum data file size allowed is 2 GB and a tablespace must store a table

 Chapter 2 Essential Oracle configuring and tuning 15

or index that will grow to 7 GB, the tablespace is created with a 2 GB data file. Then the
tablespace is altered three times to add two 2 GB data files and one 1 GB data file.

Example:
create tablespace roads datafile '/gis1/oradata/roads1.dbf' size 2048M
extent management local uniform size 1024M;

alter tablespace roads add datafile '/gis2/oradata/roads2.dbf' size 2048M;

alter tablespace roads add datafile '/gis3/oradata/roads3.dbf' size 2048M;

alter tablespace roads add datafile '/gis4/oradata/roads4.dbf' size 1024M;

Find the sum of the sizes of the objects that you will store together to determine the size of
their tablespaces. If you expect the table or index to grow in the future, be sure to allow for
that as well.

Number of extents

Keep the number of tablespace extents for tables and indexes less than 1,000 to minimize
overhead associated with each additional extent. In fact, creating a table or index with
MAXEXTENTS set to UNLIMITED can render a database unusable if the table or index
acquires more extents than the database can manage (~10,000). As a general rule of thumb,
you should try to keep the number of extents to a minimum; however, you do not need to
fanatically maintain a single extent for each object.

Positioning the files

Once you have estimated the size of the data files, determine where to position them on the
file system. This section provides a list of guidelines that you may not be able to follow in its
entirety, given the number and size of your disk drives. The guidelines have been listed in
order of importance—from the greatest to the least.

Store the online redo log files on their own disk drive. In a database that is frequently edited,
the online redo log files are the most active in terms of I/O. If you cannot position them on
their own disk drive, store them with other files that experience relatively low rates of I/O.

After the indexes have been constructed, ArcSDE does not use temporary tablespace if
SORT_AREA_SIZE has been set to the recommended 64 KB. Therefore, the temporary
tablespace can be positioned with other data files of high activity, provided your other
applications do not use it.

Keep the rollback segment data files separate from the redo log files. The rollback segments
are frequently accessed when a database is edited. Try to separate these data files from other
highly active data. Doing so improves the rate at which Oracle is able to process transactions.

Position the system tablespace data file with other data files that experience high I/O activity.
The access to these data dictionary tables is moderately low because their data is cached in
the shared pool and the buffer cache.

Position your business table and index data files according to their expected I/O. If you
expect a particular data file to experience a high degree of I/O, try to position it alone on its
own disk drive or with other data files of low to moderate activity.

The spatial index table of the ArcSDE compressed binary storage format is written to
whenever new features are added to a feature, but the table is never read. The spatial index

16 ArcSDE Configuration and Tuning Guide for Oracle

table's S<n>_IX1 index is a covering index; therefore, Oracle reads the values from the index
and never accesses the table. Since the table is never read from, the I/O is low, so the
positioning of this table is unimportant.

Repositioning data files

After the database has been in use for a while, you can examine the reads and writes to the
data files with the following query:
select vd.name, vs.phyrds, vs.phywrts
from v$datafile vd, v$filestat vs
where vs.file# = vd.file#;

If you find that some disk drives are receiving a higher percentage of the I/O than others, you
can balance the I/O by repositioning the data files. The data files are repositioned by shutting
down the Oracle instance, performing a full backup, and moving the files using operating
system commands to copy them from one disk to another. Using SQL*Plus, the instance is
started, and the database is mounted but not opened:
startup mount

Before the database can be opened, you must update the control files with the new locations
of the data files using the alter database statement:
alter database rename datafile ‘old name’ to ‘new name’;

Once all of the new locations have been entered, you may open the database.
alter database open;

Creating the database
The database should be created after the location of the database files has been determined.
At the very least, you should assign the locations for the rollback segment, temporary and
system tablespace data files, and the control files and online redo log files.

Once you have mapped out the way you want the files to be arranged on disk, create the
database. First, install the Oracle and ArcSDE software.

Refer to the Oracle installation guide for instructions on installing the Oracle software and the
ArcSDE installation guide for instructions on installing the ArcSDE software.

The Oracle installation provides you with the opportunity to create the Oracle database
following the installation of the software. If you elect to do so, select the custom database
option so that you can position the Oracle files on the disks according to your layout.

Starting with Oracle8i, the database creation scripts are not generated automatically. Instead,
you are given the choice of generating the scripts and creating the database later or creating
the database immediately without creating the scripts. If you want the scripts available as a
record of how the database was created, then you will have to generate the scripts and run
them following the completion of the installation process.

The control files, online redo log files, and Oracle database tablespaces (system, rollback, and
temporary) are created during the Oracle installation process. The USER and INDX
tablespaces created by the Oracle installation process may be dropped if you do not wish to
use them.

 Chapter 2 Essential Oracle configuring and tuning 17

Setting the data block size

During the installation process, you will be prompted to enter the data block size. Data blocks
are the Oracle atomic unit of data transfer. After a database has been created, you cannot
change the size of the data blocks. It is important that it be set correctly at this time.

The minimum recommended data block size for ArcSDE applications is 8 KB; however,
16 KB have been found to deliver a higher overall level of performance for databases storing
mostly linear or area features.

If you are not going to let the Oracle installer create the database, you can set the data block
size with the DB_BLOCK_SIZE initialization parameter. Set the DB_BLOCK_SIZE to at
least
8 KB:
DB_BLOCK_SIZE = 8192

For more information on the init.ora file, refer to Setting the Oracle initialization parameters
in this chapter.

Creating the business and index tablespaces

Once you have completed the installation of Oracle, create the tablespaces that store your
tables and indexes. You may want to write a SQL script and execute it as the SYSTEM user
within SQL* Plus. Alternatively, you could use the graphical user interface of the Oracle
Enterprise Manager’s Storage Manager to perform this task.

Creating the Oracle SDE user space
During the installation of ArcSDE, you will create the Oracle SDE user and the SDE user’s
default tablespace to store the geodatabase system tables.

Updating the storage parameters of the DATA_DICTIONARY keyword

Update the storage parameters of the DATA_DICTIONARY configuration keyword in the
dbtune.sde file located in the SDEHOME/etc directory on UNIX® systems. On Windows
NT® systems, the install shield will prompt you for the location of this file (see the ArcSDE
for Oracle Installation Guide for more information). Set the extent sizes and the names of the
tablespaces the geodatabase system tables will be stored in. The geodatabase system tables
are created by the ArcSDE sdesetupora* administration command.

Installing the optional sdesys_util package

The optional sdesys_util package, found under the SDEHOME/tools/oracle directory can be
installed in the Oracle sys users schema. This package contains stored procedures that allow
you to create and manage the sde user.

To install the sdesys_util package, log in as the Oracle sys user and execute the package
specification followed by its body:
connect sys/<password>

@sdesys_util.sps

Package created.

@sdesys_util.spb

18 ArcSDE Configuration and Tuning Guide for Oracle

Package body created.

You can allow a user other than sys to execute the stored procedures of the sdesys_util
package by executing the sdesys_util.grant_admin_privs that grants the necessary privileges.
The usage of the grant_admin_privs stored procedure is as follows:
grant_admin_privs (

administrator IN varchar2(30) DEFAULT ‘system’
)

If you do not specify any arguments, the privileges are granted to the Oracle system user:
connect sys/<password>
exec sdesys_util.grant_admin_privs(‘JOE’);

If a user, other than sys, executes an sdesys_util stored procedure, they must qualify it with
the sys users schema. For example, the system user would execute the grant_pipes_locks
stored procedure as follows:
connect system/<password>
exec sys.sdesys_util.grant_pipes_locks;

Granting execute privileges on DBMS_PIPE and DBMS_LOCKS to PUBLIC

ArcSDE uses the stored procedures of the DBMS_PIPE and DBMS_LOCK Oracle built-in
packages. ArcSDE calls stored procedures of the DBMS_PIPE package when it stores and
transmits ArcSDE rowids. ArcSDE calls the stored procedures of the DBMS_LOCK
package to add a row to the PROCESS_INFORMATION table whenever an ArcSDE
session connects. Your Oracle DBA must connect to the Oracle instance as the SYS user and
grant execute on these packages to PUBLIC:
connect sys/<password>
grant execute on dbms_pipe to public;
grant execute on dbms_lock to public;

Alternatively, if you have installed the sdesys_util package you can connect as the Oracle sys
user and execute its sdesys_util.grant_pipes_locks stored procedure:
connect sys/<password>
exec sdesys_util.grant_pipes_locks;

Creating the Oracle sde user

Before you run the sdesetupora* command to create the geodatabase system tables on a
UNIX system the sde Oracle user must be created. The Windows NT installation of ArcSDE
has automated this procedure. However, you can, if you wish, create the sde Oracle user prior
to installing ArcSDE.

Like any Oracle user the sde user requires a default tablespace. Review the previous
discussion of the ArcSDE system tablespaces to determine how many tablespaces you will
need to store your ArcSDE system data.

Use the following SQL commands to create the sde user. Substitute your own entries for the
sde user’s password, default tablespace and temporary tablespace:
connect system/<password>

create user sde
identified by <password>
default tablespace <sde user’s default tablespace>
temporary tablespace <temporary tablespace>;

Alternatively, you can use the sys user’s SDESYS.UTIL_CREATE_SDE stored procedure
to create the SDE Oracle user. The usage for CREATE_SDE_USER is:

 Chapter 2 Essential Oracle configuring and tuning 19

SDESYS_UTIL.CREATE_SDE_USER(
sdedatafile IN VARCHAR2(256) DEFAULT NULL,
sdetabspace IN VARCHAR2(30) DEFAULT ‘SDE’,
temptabspace IN VARCHAR2(30) DEFAULT ‘TEMP’,
sdepasswd IN VARCHAR2(30) DEFAULT ‘SDE’);

Executing this stored procedure without any arguments will create the SDE Oracle user with
a default tablespace set to SDE, a temporary tablespace set to TEMP, and the password set to
SDE:
connect sys/<password>
exec sdesys_util.create_sde_user;

CREATE_SDE_USER creates the SDE user’s default tablespace if you specify the location
of the tablespace’s data file.

If the default tablespace already exists, CREATE_SDE_USER will check it to make sure that
it is big enough. If it is less than 100 MB, CREATE_SDE_USER issues a warning message
telling you to either increase the size of the default tablespace or decrease the initial extents of
the state, state_lineages, and mvtables DATA_DICTIONARY configuration keyword
storage parameters. If you have configured these storage parameters to store these tables and
their indexes in other tablespaces, then you may disregard this warning. The sdesetupora*
command will fail if it cannot find enough space to store the geodatabase system tables and
indexes.

Granting install privileges to the sde Oracle user

If you are creating a fresh install of ArcSDE, grant the following list of privileges to the SDE
user. These privileges must be granted to the SDE user:

SELECT ANY TABLE
CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Alternatively, you can call the GRANT_SDE_INSTALL_PRIVS stored procedure (found in
the SDESYS_UTIL package) to grant these privileges to the SDE Oracle user:
connect sys/password
exec sdesys_util.grant_sde_install_privs;

Note: ArcSDE requires the Oracle SDE user be granted SELECT ANY TABLE privileges.
Granting SELECT ANY TABLE privileges to the SDE user allows it to auto-register Oracle
Spatial tables. Auto registration occurs when an ArcSDE application performs a layer list and
detects an Oracle Spatial table that is listed in the Oracle Spatial metadata table that is not
listed in the SDE.LAYERS table. The SDE user must be able to confirm the presence of the
Oracle Spatial table before auto-registering it. Since there is no guarantee that the owner of
the table has granted select permissions on the table to the SDE user, the SDE user must be
granted SELECT ANY TABLES privileges.

Granting upgrade privileges to the SDE Oracle user

To upgrade a previous version of an ArcSDE database, grant the following list of privileges
to complete the upgrade process. Following the successful completion of the upgrade
process, you can revoke these privileges and grant the previous list of privileges to the SDE
Oracle user.

20 ArcSDE Configuration and Tuning Guide for Oracle

CREATE SESSION
SELECT ANY TABLE
ALTER ANY TABLE
CREATE ANY INDEX
ALTER ANY INDEX
DROP ANY INDEX
CREATE ANY SEQUENCE
CREATE ANY PROCEDURE
EXECUTE ANY PROCEDURE
DROP ANY PROCEDURE
SELECT ANY SEQUENCE
CREATE ANY VIEW
DROP ANY VIEW
CREATE ANY TRIGGER
DROP ANY SEQUENCE
ANALYZE ANY
UNLIMITED TABLESPACE

You can grant this list of privileges by executing the
SDESYS_UTIL.GRANT_SDE_UPGRADE_PRIVS stored procedure:
connect sys/<password>
exec sdesys_util.grant_sde_upgrade_privs;

The upgrade privileges can be revoked and the install privileges granted by executing the
SDESYS_UTIL.REVOKE_SDE_UPGRADE_PRIVS stored procedure:
connect sys/<password>
exec sdesys_util.revoke_sde_upgrade_privs;

Note: Previous versions of ArcSDE maintained the locks in memory. Therefore, to upgrade
the ArcSDE database from a previous version to ArcSDE, the SDE user must be granted
privileges to create the sequences and triggers in the schemas of users who own tables listed
in the TABLE_REGISTRY, LAYERS, or RASTER_COLUMNS tables. Following the
completion of a successful upgrade, the privileges can be revoked, and lesser privileges
assigned for the install operation can be granted.

Creating Oracle users
The creation of an ArcSDE Oracle user differs from that of other Oracle users that you
normally create. Each ArcSDE user must own two tables for storing SDE log file data—
SDE_LOGFILES and SDE_LOGFILE_DATA. The SDE log file tables and their associated
indexes, sequences, and triggers can be created when the ArcSDE Oracle user is created. If
they are not, ArcSDE detects their absence and attempts to create them. In this case, the
ArcSDE Oracle user must be able to create the tables when they connect for the first time.
ArcSDE returns an SE_NO_ACCESS (-15) error message if the user does not have the
required privileges to create the tables, indexes, sequences and triggers associated with the
SDE log files.

The SDE_LOGFILES and SDE_LOGFILE_DATA tables and associated indexes are created
according to the SDE log file storage parameters specified in the DBTUNE table. For more
information about these storage parameters, see Chapter 3, ‘Configuring DBTUNE storage
parameters’.

The following list of privileges is required for all ArcSDE users connecting for the first time:
CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

 Chapter 2 Essential Oracle configuring and tuning 21

Once the user has successfully connected for the first time, privileges can be revoked since
the SDE_LOGFILES and SDE_LOGFILE_DATA tables now exist. The table below lists
the type of users DBAs typically create and the privileges assigned to them.

Title Description Privileges
Viewer The viewer is allowed to connect

to an ArcSDE database. Other
users grant select privileges on
their tables and feature classes to
the viewer or to the public role.
The DBA can create a role that
can be granted select privileges
on data objects owned by other
users. The role can be granted to
the viewer.

CREATE SESSION

SELECT on other user's data objects

Editor The editor is allowed to connect to
an ArcSDE database. Other users
grant select and insert, update, or
delete on data objects they own to
the editor. The DBA may create a
role that can be granted select,
insert, update, and delete
privileges on data objects owned
by other users. The role can be
granted to the editor.

CREATE SESSION

SELECT, INSERT, UPDATE, or DELETE on
other user's data objects

Owner The owner is allowed to connect
to an ArcSDE database and
create data objects. The owner
may grant privileges on their
objects to other users or roles.
Other users can grant select and
insert, update, or delete on data
objects they own to creator. The
DBA may create a role that can be
granted select, insert, update, and
delete privileges on data objects
owned by other users. The role
can be granted to the owner.

CREATE SESSION

CREATE TABLE

CREATE PROCEDURE

CREATE SEQUENCE

CREATE TRIGGER

UNLIMITED TABLESPACE

SELECT, INSERT, UPDATE, or DELETE on
other user's objects

Manually creating ArcSDE Oracle users

When you create an Oracle user, assign your users a default tablespace and a temporary
tablespace.

Note: If you do not specifically assign a temporary or default tablespace to a user, Oracle
uses the SYSTEM tablespace by default. Since the SYSTEM tablespace holds the Oracle
system tables, a vital part of the database, it is important not to use it for anything else. Since
the data sets managed by ArcSDE may be large, using the SYSTEM tablespace to store this
data could completely fill the SYSTEM tablespace and cause the Oracle database to crash.

This is the Oracle user creation syntax:
create user <username>
identified by <password>
default tablespace <default tablespace>
temporary tablespace <temporary tablespace>
quota unlimited on <default tablespace>
quota unlimited on <temporary tablespace>;

22 ArcSDE Configuration and Tuning Guide for Oracle

These are the basic privileges that must be granted to all ArcSDE Oracle users until they
connect for the first time:

CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Connect as the user to create the SDE_LOGFILES and SDE_LOGFILE_DATA tables. To
create a user of type VIEWER or EDITOR, revoke the following list of privileges after the
SDE log file tables have been created:

CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

For the VIEWER, grant SELECT privileges on the specific data objects you wish the user to
have permission to display or query. If you have a large community of viewers, create a role
that can be granted SELECT access on the data objects.

To grant or revoke SELECT access to complex data objects, such as feature datasets or
standalone feature classes, you should use ArcCatalog. Use the grant or revoke operation of
the sdelayer administration command to grant or revoke SELECT access if you have not
installed ArcGIS Desktop. The access can be granted directly to a user or to a role.

For the editor, grant SELECT privileges and editing (insert, update, or delete) privileges on
the specific data objects you wish the users to have permissions to query and edit. If you have
many editors, save time by creating a role and granting the select and edit privileges to it.
Then grant the role to each editor.

In this example, the DBA creates the user Sam with the password TREETOP. The default
tablespace in which Sam will create his tables and indexes that are not assigned a tablespace
is GIS1.

Note: The ArcSDE Administrator creates DBTUNE configuration keywords that hold the
tablespace and other storage parameters Oracle assigns to tables and indexes when it creates
them. For more information about DBTUNE configuration keywords and how to create and
use them, see Chapter 3, ‘Configuring DBTUNE storage parameters’.

The temporary tablespace used when Sam creates indexes and performs sorts is TEMP1:
create user sam
identified by treetop
default tablespace gis1
temporary tablespace temp1
quota unlimited on gis1
quota unlimited on temp1;

To create Sam’s log file tables (SDE_LOGFILES and SDE_LOGFILE_DATA) and their
associated sequence generator and trigger, the DBA grants the user Sam the following
privileges:

CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

 Chapter 2 Essential Oracle configuring and tuning 23

The DBA connects to the ArcSDE database as SAM to create the log file tables in SAM's
schema. The sdelayer administration command describe operation provides a simple way to
do this:
$ sdelayer -o describe -u sam -p tree_top

Using the REVOKE <privilege> FROM <user> command to revoke all but the CREATE
SESSION privileges since Sam is an editor and is not allowed to create a schema:
CREATE TABLE FROM SAM;
REVOKE CREATE PROCEDURE FROM SAM;
REVOKE CREATE SEQUENCE FROM SAM;
REVOKE CREATE TRIGGER FROM SAM;
REVOKE UNLIMITED TABLESPACE FROM SAM;

Create SDE_VIEWER and SDE_EDITOR roles. The DBA has determined that all users
who own schema should grant select privileges on their data objects to the SDE_VIEWER
role and that they should grant INSERT, UPDATE, and DELETE to the SDE_EDITOR role:
CREATE ROLE SDE_VIEWER;
CREATE ROLE SDE_EDITOR;

The DBA grants both the SDE_VIEWER and SDE_EDITOR roles to Sam:
GRANT SDE_VIEWER TO SAM;
GRANT SDE_EDITOR TO SAM;

Betty, a creator, uses the grant operation of the sdelayer command to grant select access on
her roads feature class to the SDE_VIEWERS role. All viewers granted the SDE_VIEWERS
role will have select access to Betty's roads feature class:
$ sdelayer -o grant -l roads,feature -A select -U sde_viewers -u betty -p cdn

Betty also grants INSERT, UPDATE, and DELETE access to the SDE_EDITORS role. Now
editors granted the SDE_EDITORS role, such as SAM, will be able to make changes to
Betty's roads feature class:
$ sdelayer -o grant -l roads,feature -A insert -U sde_editors -u betty -p cdn
$ sdelayer -o grant -l roads,feature -A update -U sde_editors -u betty -p cdn
$ sdelayer -o grant -l roads,feature -A delete -U sde_editors -u betty -p cdn

Installing the USER_UTIL package to create and maintain ArcSDE users

As an alternative to executing the SQL statements to create and maintain ArcSDE users, you
can install the user_util package of stored procedures located in the SDEHOME/tools/oracle
directory. To install the package connect as an Oracle DBA (usually the Oracle system user)
and run the package specification script followed by the body script:
connect system/<password>
@user_util.sps

Package created

@user_util.spb

Package created

Using the stored procedures of the USER_UTIL package

The CREATE_USER_AND_LOGFILES stored procedure creates an Oracle user with SDE
log files and grants privileges according to its user type. The usage for this stored procedure
is as follows:
USER_UTIL.CREATE_USER_AND_LOGFILES (

username IN VARCHAR2(30),
password IN VARCHAR2(30),
default_tabsp IN VARCHAR2(30) DEFAULT ‘USERS’,
temp_tabsp IN VARCHAR2(30) DEFAULT ‘TEMP’,

24 ArcSDE Configuration and Tuning Guide for Oracle

usertype IN VARCHAR2(8) DEFAULT ‘OPERATOR’
)

The username and password must be entered. The user’s default tablespace defaults to
USERS tablespace, while the temporary tablespace defaults to the TEMP tablespace. The
usertype argument defines the type of user that will be created and it defaults to
OPERATOR.

A user created as an OPERATOR is granted CREATE SESSION privilege, is not allowed to
create a schema, and does not have access to any data objects owned by other users.

A user created as an OWNER is granted privileges to create tables, and granted CREATE
SCHEMA privileges. OWNER users automatically grant SELECT, INSERT, UPDATE or
DELETE privileges on their own tables to other OWNER users and to OPERATOR users.

Updating the DBTUNE file
After you have created the tablespaces for your tables and indexes, update the DBTUNE file.
DBTUNE files are always located under the SDEHOME/etc directory. The dbtune.sde file is
the default DBTUNE file that the ArcSDE setup program uses to populate the DBTUNE
table.

Create the keywords in the dbtune.sde file that will contain the Oracle configuration
parameters of the feature classes and tables that you intend to create with the ArcGIS
programs ArcCatalog and ArcToolbox or the many ArcSDE administration tools.

For a detailed discussion on the maintenance of the DBTUNE table, refer to Chapter 3,
Configuring DBTUNE storage parameters. This chapter describes DBTUNE parameters that
can be applied to each of the spatial storage methods supported by ArcSDE for Oracle. The
supported spatial storage formats are described in Appendixes C, D, and E.

Creating tables, feature classes, and raster column
ArcInfo and ArcSDE offer several ways to create and maintain the tables, indexes, and
feature classes of an ArcSDE database. Chapter 4, ‘Managing tables, feature classes, and
raster columns’, describes in detail the possible methods for creating tables and feature
classes using either ArcInfo or ArcSDE tools.

Setting the Oracle initialization parameters
Whenever you start an Oracle instance, Oracle reads its initialization parameters from the
init.ora file. These parameters define the characteristics of the instance. This section describes
some of the parameters that control allocation of shared memory. For a detailed discussion of
the Oracle initialization parameters, refer to Oracle Server Tuning for your Oracle release.

The init.ora file is located under the $ORACLE_BASE/admin/<ORACLE_SID>/pfile
directory or folder. Init.ora is a common name given to the initialization file of an Oracle
database instance but for any given instance, the file is actually called init<oracle SID>.ora.
For example, if the Oracle SID is GIS, the init.ora file for this instance would be called
initGIS.ora.

 Chapter 2 Essential Oracle configuring and tuning 25

Managing Oracle’s memory
Care must be taken when setting the initialization parameters that affect memory. Setting
these parameters beyond the limits imposed by the physical memory resource of the host
machine significantly degrades performance. This section provides a few general rules
regarding configuration of System Global Area (SGA) as well as memory structures affecting
the size of an Oracle user’s private area, the PGA. The SGA is a block of shared memory that
Oracle allocates and shares with all sessions. For more information about the SGA, refer to
the Oracle Concepts Guide for your Oracle release.

SGA must not swap

You should not create an SGA that is larger than two-thirds the size of your server’s physical
RAM. Your virtual memory must be able to accommodate both the SGA and the
requirements of all active processes on the server.

Avoid excessive paging

Using your operating system tools (vmstat on UNIX systems and the task manager on
Windows NT), check for excessive paging. A high degree of paging can be the result of an
SGA that is too large.

Configure enough virtual memory

As a rule, Oracle recommends that your swap space be at least two to four times the size of
your physical RAM. The required size of the swap file UNIX or the page file on
Windows NT depends on the number of active ArcSDE sessions. For every ArcSDE session,
a gsrvr process and a corresponding Oracle process is started. To determine the memory
usage of these processes, use the ps -elf command on UNIX systems and the Processes tab of
the Windows NT Task Manager. You must deduct the size of the Oracle SGA from the
Oracle user processes. The total size of the ArcSDE gsrvr processes, the ArcSDE giomgr
processes, Oracle user processes, Oracle background processes, operating system processes,
and any other process running on the server must be able to fit into virtual memory.

For ArcSDE client applications that connected directly to an Oracle instance, the gsrvr
process does not exist. Also, if the ArcSDE service is not used because all client applications
connect directly to the Oracle instance, the giomgr process will not be started either. For this
reason direct connections have a smaller memory imprint on the server since the gsrvr
process is absent.

Redo log buffer
The redo log buffer is a component of the Oracle SGA that holds uncommitted changes to the
database. The log buffer is flushed to the current online redo log file whenever a user issues a
commit and the buffer becomes one-third full or every three seconds. The size of the redo log
buffer is controlled by the LOG_BUFFER parameter. Because of the rapid rate at which the
log buffer is flushed, it does not need to be that large.

Oracle recommends that you set this parameter to 500 KB or 128 KB multiplied by the
number of CPUs. If you have less than 4 CPUs, set this parameter to 512,000 (500 KB).
log_buffer = 512000

Otherwise, set LOG_BUFFER to 128 KB * the number of CPUs.

26 ArcSDE Configuration and Tuning Guide for Oracle

Setting the LOG_BUFFER to large values in the hope of processing huge loading
transactions may in fact result in a performance reduction. Latch contention between
transactions may occur if the log buffer is set too large.

To determine if the redo log buffer is large enough while the system is active examine the
Oracle dynamic table V$SYSSTAT. Compare the values of the redo log space requests and
the redo entries. Oracle recommends that you increase the size of the redo log buffers if the
ratio of these values is greater than 1:5,000.
select name, value
from v$sysstat
where name in (‘redo entries’ , ’redo log space requests’);

Shared pool
The shared pool is another component of the Oracle SGA that holds both the data dictionary
cache and the library cache. The data dictionary cache holds information about data objects,
free space, and privileges. The library cache holds the most recently parsed SQL statements.
Generally, if the shared pool is large enough to satisfy the resource requirements of the
library cache, it is already large enough to hold the data dictionary cache. The size of the
shared pool is controlled by the SHARED_POOL_SIZE parameter.

Set this parameter to at least 55 MB:
shared_pool_size = 55,000,000

Highly active geodatabases supporting volatile utility or parcel editing systems may require
the SHARED_POOL_SIZE to be set as high as 200 MB.

Of the three SGA buffers, the shared pool is the most important. If the SGA is already as
large as it can be, given the size of your physical memory, reduce the size of the buffer cache
to accommodate a larger shared pool.

Buffer cache
The buffer cache is another component of the Oracle SGA that stores the most recently used
data blocks. Data blocks are the Oracle atomic unit of data transfer. Oracle reads and writes
data blocks to and from the database whenever the user edits or queries it. The size of the
buffer cache is controlled by the DB_BLOCK_BUFFERS parameter.

For optimum performance, increase the size of the buffer cache without causing the operating
system to page excessively and/or swap the SGA. Oracle recommends that the SGA not be
larger than two-thirds of the physical RAM.

To estimate the size of the buffer cache, first determine how much physical RAM your server
has. Multiply this number by 0.66 to determine the target size of the SGA. Deduct the
SHARED_POOL_SIZE and LOG_BUFFER to return the amount of memory available to
the buffer cache. Reduce this number by 10 percent to account for Oracle’s internal memory
usage. Finally, divide by the database block size to determine the DB_BLOCK_BUFFERS
setting. (The recommended minimum data block size for ArcSDE is at least 8 KB; however,
we have found overall performance does improve with larger block sizes.)

 Chapter 2 Essential Oracle configuring and tuning 27

memory available to SGA = physical RAM * 2/3

memory available to buffer cache
= (memory available to SGA - (shared_pool_size + log_buffer)) * 0.9

db_block_buffers
= memory available to buffer cache / db_block_size

Oracle recommends that the buffer cache hit ratio be at least 95 percent. In other words, for
all data block requests made to the Oracle server, the data blocks were found in the buffer
cache at least 95 percent of the time. Data blocks not found in the buffer cache had to be
retrieved from disk less than 5 percent of the time. Examine the performance of the buffer
cache after the system has been in use for some time. Compare the values of the db block
gets, consistent gets, and physical reads in the Oracle dynamic view V$SYSSTAT. If the
physical reads are greater than 5 percent of the sum of the db block gets and the consistent
gets, you should increase the size of the buffer cache:
select name, value
from v$sysstat
where name in (’db block gets’, ’consistent gets’, ’physical reads’);

Buffer cache hit ratio = 1 - (physical reads / (db block gets + consistent gets))

You should not increase the buffer cache at the expense of the shared pool.

Sort area
The sort area is a component of each session's PGA and not the SGA.

As the name implies, Oracle uses sort area to perform sorting. Larger sort areas reduce the
time required to build an index. As Oracle constructs an index, it writes the index blocks to
the sort area. When the sort area becomes full, its contents are transferred to the temporary
tablespace. The larger the sort area, the less frequently Oracle must write intermediate results
to temporary disk space.

You must be careful not to make the sort area too large because it is allocated per session to
the PGA and not per instance as is the SGA. Additional users connecting to the database
causes more space to be allocated to the Oracle instance because of the creation of additional
PGA’s

Also, Oracle may allocate sort area for each table referenced within a join. Therefore, it is
theoretically possible for Oracle to allocate the maximum sort area for each table referenced
in a join. Generally, the logic of the query prevents this from happening. However, you
should be aware of the dynamic nature of sort area.

Sort area is controlled by the SORT_AREA_SIZE parameter.

For the construction of the indexes during the creation of the database, set the
SORT_AREA_SIZE parameter to a large value since few sessions are active, and the indexes
are created faster if more sort area is available. For 2 GB of RAM, setting the sort area to 200
MB is not unreasonable if you are using one session to create indexes on tables that have
millions of rows of data.

28 ArcSDE Configuration and Tuning Guide for Oracle

Once the database is constructed you should reduce the size of the sort area to account for the
increased number of sessions. ArcInfoTM applications accessing a multiversioned geodatabase
generally use little sort area. A sort area of 1 MB is sufficient to prevent I/O to temporary
tablespace for these types of applications.

Set SORT_AREA_SIZE to 1 MB:
sort_area_size = 1048576

You can determine if SORT_AREA_SIZE is large enough by comparing the value of sorts
(memory) and sorts (disk) of the Oracle dynamic view V$SYSSTAT. If the sorts performed
on disk are greater than 10 percent of those performed in memory, consider increasing the
sort area.
select name, value
from v$sysstat
where name in (‘sorts (memory)’, ‘sorts (disk)’);

Prepage the SGA
Set the PRE_PAGE_SGA to true for servers that are running a single Oracle instance.
Prepaging the SGA increases the amount of time required to start the Oracle server as well as
the amount of time required for users to connect. However, it does reduce the number of page
faults—which occur whenever Oracle must allocate another page to the SGA—while the
server is active:
pre_page_sga = true

Enabling the optional Oracle startup trigger
ArcSDE includes an optional startup trigger that is run whenever the Oracle instance is
started. The startup trigger cleans up any orphaned session information that remains in the
ArcSDE system tables following an instance failure. The startup trigger is optional because
ArcSDE invariably cleans up the orphaned metadata during its normal operation. The startup
trigger merely offers a guarantee that orphaned metadata will not be present following Oracle
instance startup.

 To create the startup trigger run the SQL arcsde_database_startup.sql script as the Oracle
SYS user. The script is located at $SDEHOME/etc/tools/oracle on UNIX systems and
%SDEHOME%\etc\tools\oracle on Windows NT.

Updating Oracle statistics
The ArcSDE server has been built to work with either the cost-based optimizer or the
rule-based optimizer. As a result, you should set the init.ora initialization variable
OPTIMIZER_MODE to CHOOSE, allowing the optimizer to choose the cost-based
approach if it encounters a hint or if you have computed statistics.

 Chapter 2 Essential Oracle configuring and tuning 29

Updating ArcSDE compressed binary statistics
For optimal performance of feature classes created with the ArcSDE compressed binary
storage format, keep the statistics up-to-date.

In ArcCatalog, to update the statistics of all of the tables and indexes within a feature dataset,
right-click on the feature dataset and click on Analyze. To update the tables and indexes
within a feature class, right-click on the feature and click on Analyze.

From the command line, use the UPDATE_DBMS_STATS operation of the sdetable
administration command to update the statistics for all the tables and indexes of a feature
class. It is better to use the UPDATE_DBMS_STATS operation rather than individually
analyzing the tables with the Oracle SQL ANALYZE statement because it updates the
statistics for all the tables of a feature class that require statistics. To have the
UPDATE_DBMS_STATS operation update the statistics for all the required tables, do not
specify the -K (schema object) option.
sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

When the feature class is registered as multiversioned, the “adds” and “deletes” tables are
created to hold the business table’s added and deleted records. The version registration
process automatically updates the statistics for all the required tables at the time it is
registered.

Periodically update the statistics of dynamic tables and indexes to ensure that the Oracle
cost-based optimizer continues to choose an optimum execution plan. To save time, you can
analyze all of the data objects within a feature dataset in ArcCatalog.

If you do not have enough temporary tablespace to compute statistics on larger tables, use the
-m option to estimate statistics. The tables will be estimated at a sample rate of 33 percent.
sdetable -o update_dbms_stats -t roads -m estimate -u av -p mo

30 ArcSDE Configuration and Tuning Guide for Oracle

You should consider increasing the size of your temporary tablespace to compute statistics
rather than estimate them as it provides more accurate statistics for the Oracle cost-based
optimizer.

The statistics of a table’s indexes are automatically computed when the table is analyzed, so
there is no need to analyze the indexes separately. However, if you need to do so you can use
the UPDATE_DBMS_STATS -n option with the index name.

The example below illustrates how the statistics for the f2_ix1 index of the roads feature table
can be updated:
sdetable -o update_dbms_stats -t roads -K f -n F2_IX1 -u av -p mo

For more information on analyzing geodatabase objects from ArcCatalog, refer to Building a
Geodatabase.

For more information on the sdetable administration command and the
UPDATE_DBMS_STATS operation, refer to the ArcSDE Developer Help.

Updating Oracle Spatial geometry type statistics
Update the statistics of the business table containing an Oracle Spatial column with Analyze
from ArcCatalog or with the sdetable UPDATE_DBMS_STATS operation.
sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

You may also update the statistics using the Oracle ANALYZE statement. Use the compute
statistics option if there is enough temporary tablespace available to permit the operation.
Otherwise, use the estimate statistics option with as high a sample rate as possible.
analyze table roads compute statistics;

When ArcSDE creates data using Oracle Spatial Geometry, it can optionally create the
layer’s Oracle Spatial index. Oracle Spatial suggests that you analyze this spatial index. If
ArcSDE is asked to create the Oracle Spatial index for you, it automatically analyzes this
index. If you decide to create the Oracle Spatial index on your own, you will have to use the
Oracle ANALYZE statement to analyze your index after creating it.

For more information on the Oracle ANALYZE statement, refer to the Oracle SQL
Reference Manual for your release of Oracle.

31

C H A P T E R 3

Configuring DBTUNE storage
parameters

DBTUNE storage parameter strings allow you to control how ArcSDE
clients create objects within an Oracle database. They allow you to determine
such things as how to allocate space to a table or index, which tablespace a
table or index is created in, as well as other Oracle specific storage attributes.
They also allow you to specify one of the available storage formats for the
geometry of a spatial column.

This chapter discusses the mechanism by which ArcSDE manages storage
parameters that you provide and applies them to specific statements
submitted to Oracle for the creation of ArcSDE tables, indexes and other
objects.

For detailed information how Oracle uses storage parameters to control space
allocation, refer to the Oracle Server Administrator’s Guide for your Oracle
release.

The DBTUNE table and file
The DBTUNE storage parameters are maintained online in the DBTUNE metadata table.
The DBTUNE table, along with all other metadata tables, is created during the setup phase
that follows the installation of the ArcSDE software.

The DBTUNE table is given specific default values upon initial setup, but these values may
be changed through use of a dbtune file. Several example versions of the dbtune file are
provided with the installation media for ArcSDE.

DBTUNE parameters
Parameters define the storage configuration of simple objects, such as tables and indexes, as
well as complex objects such as feature classes, network classes, and raster columns. Many
different parameters may be grouped together under a single configuration keyword.

32 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE client applications and some ArcSDE administration tools reference one or more
configuration keywords when creating object.

When a configuration keyword is specified by an ArcSDE application or administration tool,
the parameters within the associated parameter group are searched and the necessary
configuration strings are incorporated into the CREATE TABLE or CREATE INDEX
statement submitted to the Oracle database server.

The structure of the DBTUNE file
Storage parameters in a dbtune file occur as a combination of parameter name and
configuration string delimited by white space. A configuration string value may span
multiple lines and must be enclosed in double quotes. For example, a valid specification for
the parameter named A_INDEX_ROWID might look like this:

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS
1 PCTINCREASE 0)"

Storage parameters are grouped by keyword. Each parameter group is introduced by its
keyword which is prefixed by two pound signs, “##”. The word ‘END’ terminates each
parameter group. Double pound signs, “##”, signal the presence of a keyword but are not
part of the keyword itself.

For example, a group of parameters under the configuration keyword “WILSON_DATA”
may look like this:
##WILSON_DATA

ATTRIBUTE_BINARY "LONGRAW"
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
END

In special circumstances ArcSDE references a compound keyword when creating database
objects. The compound keyword allows ArcSDE to create related database objects having
very different object creation parameters to accommodate difference performance needs. A
compound keyword consists of a configuration keyword plus a suffix delimited by a double
colon, “::”. For example:
##ELECTRIC::DESC

parameter name “configuration string”
etc…

END

Comments within the dbtune file are indicated by a single pound sign, “#”. Default versions
of the dbtune file provided in the general software release contain lines that are commented
out. Such lines are used as placeholders for certain storage parameters, such as tablespace
name, and may be restored by removing the comment character and editing the line.

Any number of parameter groups may be specified in a dbtune file. However, certain groups
and certain parameter names within groups are expected to exist and will be created in the
DBTUNE table if they do not exist in the dbtune file.

 Chapter 3 Configuring DBTUNE storage parameters 33

The structure of the DBTUNE table
Parameters from a dbtune file are loaded into the DBTUNE table using the sdedbtune utility.
The DBTUNE table has the following definition:
Name Null? Datatype
keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keyword for the group in which each parameter is
found. For a single keyword, there may be many different parameter_name values, each one
associated with a config_string value.

After creating the DBTUNE table, the setup phase of the ArcSDE 8.1 installation populates
the table with the contents of the dbtune.sde file, which it expects to find in the
%SDEHOME%/etc directory under Windows or the $SDEHOME/etc under Unix. If the
DBTUNE table already exists, the ArcSDE setup phase will not alter its contents.

Managing the DBTUNE table
Through the use of the sdedbtune utility you can initialize or alter the contents of the
DBTUNE table. This utility guarantees that the DBTUNE table maintains a certain default
set of keywords, parameters and parameter values.

In addition to the default keywords and parameters, you may add to the DBTUNE file
keywords and configuration values of your choosing.

Note: ESRI does not recommend using SQL to directly alter the contents of the DBTUNE
table. Doing so would bypass certain protections written into the sdedbtune utility, possibly
leading to reduced performance.

Initializing the DBTUNE table
The dbtune.sde file that is provided with the install media contains default values, which are
used to initialize the DBTUNE table.

On Unix systems, you can modify the dbtune.sde file prior to running the sdesetupora
command. On Windows NT systems the setup phase is part of the install so you will have to
edit the file and use the sdedbtune import operation to customize the DBTUNE table.

If the dbtune.sde file is missing when the sdesetupora command is executed, or if specific
parameters are missing because dbtune.sde file has been altered, the ArcSDE software will
enter software default values into the dbtune table.

Customizing the DBTUNE file
Prior to creating ArcSDE objects, you should customize the dbtune.sde file by specifying the
tablespace names for storage parameters. In the default dbtune.sde file, the tablespace entries
in the dbtune.sde file have been commented out with the “#” character.

To customize the dbtune.sde file, remove the comment character preceding each tablespace
specification and enter the names of the tablespaces where you wish to store your ArcSDE

34 ArcSDE Configuration and Tuning Guide for Oracle

tables and indexes. Be careful not to remove the double quotation marks that surround the
configuration strings.

Follow the procedure provided in the following example for updating the Oracle tablespace
parameter in the dbtune.sde file.

The DEFAULTS configuration keyword in the dbtune.sde file contains the B_STORAGE storage parameter
with the Oracle tablespace parameter commented out.

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
TABLESPACE <default business table tablespace name>

STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0)"

Edit the dbtune.sde file, remove the “#” comment character, and enter the name of the tablespace you
want to store business tables in by default.

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4

TABLESPACE ROADS
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0)"

When the setup program loads your customized dbtune, configuration keywords are written
into the DBTUNE table.

Editing the DBTUNE table
If you need to change the contents of the DBTUNE table after it is loaded, you should use the
sdedbtune utility and follow these steps.

1. Export the DBTUNE table to a text file using the sdedbtune –o export command.

2. Edit the resulting file with a UNIX file-based editor, such as "vi", or a Windows NT file-
based editor such as "notepad".

3. Import the edited file to the DBTUNE table using the sdedbtune –o import command.

In the following example, the DBTUNE table is exported to the dbtune.out file, and the file is
edited with the UNIX "vi" file-based editor.
$ sdedbtune -o export -f dbtune.out -u sde -p fredericton

ArcSDE 8.1 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

Successfully exported to file SDEHOME\etc\dbtune.out

$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p fredericton -N

ArcSDE 8.1 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility

 Chapter 3 Configuring DBTUNE storage parameters 35

Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file to the $SDEHOME/etc directory.
You cannot relocate the file to another directory. By not allowing the relocation of the file,
the sdedbtune command ensures the dbtune parameters remain under the ownership of the
ArcSDE administrator.

Adding keywords to the DBTUNE table
You may add parameter groups to the DBTUNE table for any special purpose. For instance,
you may wish to create certain feature classes in a newly created tablespace that is segregated
from the rest of the data.

To add keywords, follow the instructions above for editing the DBTUNE table. When you
edit the export file, it is often a good idea to create a new parameter group as a cut and paste
copy of an existing parameter group in order to avoid introducing syntax errors. You may
then edit the configuration keyword and any of the strings to desired new values before
saving the dbtune file and importing it back into the DBTUNE table.

Using the DBTUNE table
At its most basic level, the DBTUNE table provides configuration strings that are appended
to a CREATE TABLE or CREATE INDEX statement in SQL. The configuration strings
specify storage parameters that must be considered valid by the Oracle server.

Selecting the configuration string
The choice of configuration strings by an ArcSDE application depends upon the operation
being performed and the type of object it is being performed on, as well as the configuration
keyword. For example, if the type of operation is CREATE TABLE and the type of table
being created is a business table, the parameter_name of B_STORAGE will be used to
determine the configuration string.

The ArcSDE application then searches the DBTUNE table for a configuration string whose
configuration keyword matches the given configuration keyword and whose parameter_name
matches the chosen name.

When running the sdetable and certain other ArcSDE administration commands, you may
specify your own configuration keyword. When running ArcSDE applications, the
configuration keyword is specified to the ArcSDE server automatically.

If the application cannot find the requested configuration string within the specified
parameter group, it searches the DEFAULT parameter group. If the requested configuration
string cannot located within the DEFAULT parameter group, the ArcSDE use no
configuration string and the CREATE TABLE or CREATE INDEX statement picks up the
defaults according to the rules of the Oracle server.

36 ArcSDE Configuration and Tuning Guide for Oracle

Table parameters
Table parameters define the storage configuration of an Oracle table. The configuration string
associated with the parameter is appended to the CREATE TABLE statement prior to its
execution by ArcSDE.

Valid entries for an ArcSDE table include any parameter allowable to the right of the column
list in the CREATE TABLE statement, especially including the TABLESPACE and
STORAGE clauses.

For example, if you define the B_STORAGE parameter in this manner:
B_STORAGE "tablespace roads_tabsp storage (initial 10M next 1M minextents 1
maxextents 100 pctincrease 0 freelists 4) initrans 4 pctfree 10 pctused 90"

ArcSDE would execute the following Oracle CREATE TABLE statement:
CREATE TABLE roads (road_id integer, name varchar2(32), surface_code integer)
tablespace roads_tabsp storage (initial 10M next 1M minextents 1 maxextents
100 pctincrease 0 freelists 4) initrans 4 pctfree 10 pctused 90;

Index parameters
Index parameters define the storage configuration of an Oracle index. The index parameter is
appended to an Oracle CREATE INDEX statement prior to its execution by ArcSDE.

Valid entries in an ArcSDE index parameter include any parameter allowable by the Oracle
server to the right of the column list of the CREATE INDEX statement, especially including
the TABLESPACE and STORAGE clauses.

For example, if you specify the B_INDEX_USER parameter in this manner:
B_INDEX_USER "tablespace roads_idx_tabsp storage(initial 1M next 512K
minextents 1 maxextents 100 pctincrease 0 freelists 4) initrans 4 pctfree 10"

ArcSDE would assemble a CREATE INDEX statement like this:
CREATE INDEX roads_idx on roads (road_id)
tablespace roads_idx_tabsp storage (initial 1M next 512K minextents 1
maxextents 100 pctincrease 0 freelists 4) initrans 4 pctfree 10;

Defining the storage parameters
Configuration keywords may include any combination of three basic types of storage
parameters: meta parameters, table parameters, and index parameters.

Meta parameters define the way certain types of data will be stored, the environment of a
configuration keyword, or a comment that describes the configuration keyword. Table and
index parameters establish the storage characteristics of, respectively, tables and indexes.

The business table storage parameter
A business table is any Oracle table created by an ArcSDE client, the sdetable administration
command, or the ArcSDE C API SE_table_create function.

Use the DBTUNE table's B_STORAGE storage parameter to define the storage
configuration of a business table.

 Chapter 3 Configuring DBTUNE storage parameters 37

The business table index storage parameters
Three index storage parameters exist to support the creation of business table indexes.

The B_INDEX_USER storage parameter holds the storage configuration for user-defined
indexes created with the C API function SE_table_create_index and the create_index
operation of the sdetable command.

The B_INDEX_ROWID storage parameter holds the storage configuration of the index that
ArcSDE creates on a register table's object ID column, commonly referred to as the ROWID.

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also be
registered with the sdetable –o alter_reg command or with ArcCatalog. The
SDE.TABLE_REGISTRY system table maintains a list of the currently registered tables.

The B_INDEX_SHAPE storage parameter holds the storage configuration of the spatial
column index that ArcSDE creates when a spatial column is added to a business table. This
index is created by the ArcSDE C API function SE_layer_create. This function is called by
ArcInfo when it creates a feature class and by the add operation of the sdelayer command.

Multiversioned table storage parameters
Registering a business table as multiversioned allows multiple users to maintain and edit their
copy of the object. At appropriate intervals each user merges the changes they have made to
their copy with the changes made by other users and reconciles any conflicts that arise when
the same rows are modified.

ArcSDE creates two tables—the adds table and the deletes table—for each table that is
registered as multiversioned.

The A_STORAGE storage parameter maintains the storage configuration of the adds table.
Four other storage parameters hold the storage configuration of the indexes of the adds table.
The adds table is named A<n>, where <n> is the registration ID listed in the
SDE.TABLE_REGISTRY system table. For instance, if the business table ROADS is listed
with a registration ID of 10, ArcSDE creates the adds table as A10.

The A_INDEX_ROWID storage parameter holds the storage configuration of the index that
ArcSDE creates on the multiversion object ID column, commonly referred to as the ROWID.
The adds table ROWID index is named A<n>_ROWID_IX1, where <n> is the business
table's registration ID, which the adds table is associated with.

The A_INDEX_STATEID storage parameter holds the storage configuration of the index
that ArcSDE creates on the adds table's SDE_STATE_ID column. The SDE_STATE_ID
column index is called A<n>_STATE_IX2, where <n> is the business table's registration ID,
which the adds table is associated with.

The A_INDEX_SHAPE storage parameter holds the storage configuration of the index that
ArcSDE creates on the adds table's spatial column. If the business table contains a spatial
column, the column and the index on it are duplicated in the adds table. The adds table's
spatial column index is called A<n>_IX1_A, where <n> is the layer ID of the feature class as
it is listed in the SDE.LAYERS table.

38 ArcSDE Configuration and Tuning Guide for Oracle

The A_INDEX_USER storage parameter holds the storage configuration of user-defined
indexes that ArcSDE creates on the adds table. The user-defined indexes on the business
tables are duplicated on the adds table.

The D_STORAGE storage parameter holds the storage configuration of the deletes table.
Two other storage parameters hold the storage configuration of the indexes that ArcSDE
creates on the deletes table. The deletes table is named D<n>, where <n> is the registration
ID listed in the SDE.TABLE_REGISTRY system table. For instance, if the business table
ROADS is listed with a registration ID of 10, ArcSDE creates the deletes table as D10.

The D_INDEX_STATE_ROWID storage parameter holds the storage configuration of the
D<n>_IDX1 index that ArcSDE creates on the deletes table's SDE_STATE_ID and
SDE_DELETES_ROW_ID columns.

The D_INDEX_DELETED_AT storage parameter holds the storage configuration of the
D<n>_IDX2 index that ArcSDE creates on the deletes table's SDE_DELETED_AT column.

Note: If a configuration keyword is not specified when the registration of a business table is
converted from single-version to multiversion, the adds and deletes tables and their indexes
are created with the storage parameters of the configuration keyword the business table was
created with.

Feature class storage parameters
A feature class created with an ArcSDE compressed binary storage (LONG RAW or BLOB
datatype) format adds two tables to the Oracle database—the feature table and the spatial
index table. Three indexes are created on the feature table, and two indexes are created on the
spatial index table. The storage parameters for these tables and indexes follow the same
pattern as the B_STORAGE and B_INDEX_* storage parameters of the business table.

The F_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration string of the feature table. The feature table is created as F_<n>, where <n> is
the layer ID of the table's feature class as found in the SDE.LAYERS table.

The F_INDEX_FID storage parameter holds the Oracle CREATE INDEX storage
configuration string of the feature tables spatial column index. The spatial column is created
as F_<n>_IX1, where <n> is the layer ID of the index's feature class as found in the
SDE.LAYERS table.

The F_INDEX_AREA storage parameter holds the Oracle CREATE INDEX storage
configuration of the feature tables area column index. The spatial column is created as
F_<n>_AREA, where <n> is the layer ID of the index's feature class as found in the
SDE.LAYERS table.

The F_INDEX_LEN storage parameter holds the Oracle CREATE INDEX storage
configuration of the feature table’s length column index. The spatial column is created as
F_<n>_LEN, where <n> is the layer ID of the index's feature class as found in the
SDE.LAYERS table.

The S_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration of the spatial index table. The spatial index table is created as S_<n>, where

 Chapter 3 Configuring DBTUNE storage parameters 39

<n> is the layer ID of the spatial index table's feature class as found in the SDE.LAYERS
table.

The S_INDEX_ALL storage parameter holds the Oracle CREATE INDEX storage
configuration of the spatial table first index. The spatial index table is created as S_<n>_IX1,
where <n> is the layer ID of the index's feature as class found in the SDE.LAYERS table.

The S_INDEX_SP_FID storage parameter holds the Oracle CREATE INDEX storage
configuration of the spatial table second index. The spatial index table is created as
S_<n>_IX2, where <n> is the layer ID of the index's feature as class found in the
SDE.LAYERS table.

Raster table storage parameters
A raster column added to a business table is actually a foreign key reference to raster data
stored in a schema consisting of four tables and five supporting indexes.

The RAS_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration of the RAS table.

The RAS_INDEX_ID storage parameter holds the Oracle CREATE TABLE storage
configuration of the RAS table index.

The BND_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration of the BND table index.

The BND_INDEX_ COMPOSITE storage parameter holds the Oracle CREATE INDEX
storage configuration of the BND table’s composite column index.

The BND_INDEX_ID storage parameter holds the Oracle CREATE INDEX storage
configuration of the BND table’s rid column index.

The AUX_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration of the AUX table.

The AUX_INDEX_COMPOSITE storage parameter holds the Oracle CREATE INDEX
storage configuration of the AUX table's index.

The BLK_STORAGE storage parameter holds the Oracle CREATE TABLE storage
configuration of the BLK table.

The BLK_INDEX_COMPOSITE storage parameter holds the Oracle CREATE TABLE
storage configuration of the BLK table's index.

Arranging storage parameters by keyword
Storage parameters of the DBTUNE table are grouped by keyword. The following
keywords are present by default in the DBTUNE table.

• DEFAULTS

• DATA_DICTIONARY

40 ArcSDE Configuration and Tuning Guide for Oracle

• IMS_METADATARELATIONSHIPS

• IMS_METADATA

• IMS_METADATATAGS

• IMS_METADATATHUMBNAILS

• IMS_METADATAUSERS

• IMS_METADATAVALUES

• IMS_METADATAWORDINDEX

• IMS_METADATAWORD

DEFAULTS keyword
Each DBTUNE table has a fully populated DEFAULTS configuration keyword.

The DEFAULTS configuration keyword can be selected whenever you create a table, index,
feature class, or raster column. If you do not select a keyword for one of these objects, the
DEFAULTS configuration keyword is used. If you do not include a storage parameter in a
configuration keyword that you have defined, ArcSDE uses the storage parameter from the
DEFAULTS configuration keyword.

The DEFAULTS configuration keyword relieves you of the need to define all the storage
parameters for each of your configuration keywords. The storage parameters of the
DEFAULTS configuration keyword should be populated with values that represent the
average storage configuration of your data.

During installation, if the ArcSDE software detects a missing DEFAULTS configuration
keyword storage parameter in the dbtune.sde file, it automatically adds the storage parameter.
If you import a DBTUNE file with the sdedbtune command, the command automatically
adds default storage parameters that are missing. ArcSDE will detect the presence of the
following list of storage parameters and insert the storage parameter and the default
configuration string.
##DEFAULTS

ATTRIBUTE_BINARY "LONGRAW"
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
B_INDEX_ROWID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
B_INDEX_USER "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"

 Chapter 3 Configuring DBTUNE storage parameters 41

D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_STORAGE "PCTFREE 30 PCTUSED 70 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

GEOMETRY_STORAGE "SDEBINARY"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
UI_TEXT ""

END

Setting the system table DATA_DICTIONARY configuration
keyword
During the execution of the sdesetupora administration tool, the ArcSDE and geodatabase
system tables and indexes are created with the storage parameters of the
DATA_DICTIONARY configuration keyword. You may customize the configuration
keyword in the dbtune.sde file prior to running the sdesetupora* tool. In this way you can
change default storage parameters of the DATA_DICTIONARY configuration keyword.

Edits to all of the geodatabase system tables and most of the ArcSDE system tables occur
when schema change occurs. As such, edits to these system tables and indexes usually
happen during the initial creation of an ArcGIS database with infrequent modifications
occurring whenever a new schema object is added.

Four of the ArcSDE system tables—VERSION, STATES, STATE_LINEAGES, and
MVTABLES_MODIFIED—participate in the ArcSDE versioning model and record events
resulting from changes made to multiversioned tables. If your site makes extensive use of a
multiversioned database, these tables and their associated indexes are very active. Separating
these objects into their own tablespace allows you to position their data files with data files
that experience low I/O activity and thus minimize disk I/O contention.

If the dbtune.sde file does not contain the DATA_DICTIONARY configuration keyword, or
if any of the required parameters are missing from the configuration keyword, the following
records will be inserted into the DATA_DICTIONARY when the table is created. (Note that
the DBTUNE file entries are provided here for readability.)
##DATA_DICTIONARY

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 40K NEXT 40K MINEXTENTS 1 MAXEXTENTS 200
PCTINCREASE 0)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 40K NEXT 40K MINEXTENTS 1 MAXEXTENTS 200
PCTINCREASE 0)"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 40K NEXT 40K
MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

STATE_LINEAGES_TABLE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4

42 ArcSDE Configuration and Tuning Guide for Oracle

INITIAL 40M NEXT 10M MINEXTENTS 1 MAXEXTENTS
200)"

STATES_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 8M NEXT 1M
MINEXTENTS 1 MAXEXTENTS 200)"

STATES_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 1M NEXT 128K MINEXTENTS 1 MAXEXTENTS

200)"

MVTABLES_MODIFIED_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 2M NEXT 1M
MINEXTENTS 1 MAXEXTENTS 200)"

MVTABLES_MODIFIED_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 2M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200)"

VERSIONS_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 256K
NEXT 128K MINEXTENTS 1 MAXEXTENTS 200)"

VERSIONS_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 128K NEXT 128K MINEXTENTS 1
MAXEXTENTS 200)"

END

The TOPOLOGY keyword
The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS and DIRTYAREAS. An SDE instance
must have a valid topology keyword in the dbtune table, or topology will not be built.

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted during
normal use. The DIRTYAREAS table will reduce in size only when database versions get
compressed.

Because the DIRTYAREAS table is much more active than the remaining topology tables,
the TOPOLOGY keyword may be compound. You may specify the DIRTYAREAS suffix
to list configuration string to be used to create the topology tables.

For Oracle, the default values for TOPOLOGY and TOPOLOGY::DIRTYAREAS are
##TOPOLOGY_DEFAULTS
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

 Chapter 3 Configuring DBTUNE storage parameters 43

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
UI_TOPOLOGY_TEXT "The topology default configuration"
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
END

The IMS METADATA keyword
The IMS METADATA keyword controls the storage of the IMS Metadata tables. This
keyword is a standard part of the dbtune table. If the IMS_METADATA storage parameters
are not present in the dbtune file when it is imported into the DBTUNE table, ArcSDE
supplies software defaults.

44 ArcSDE Configuration and Tuning Guide for Oracle

The software defaults have the same settings as the parameters listed in the dbtune.sde table
that is shipped with ArcSDE. The Oracle parameter settings such as the initial and next
should be sufficient. However, you will need to edit the tablespace names.

For more information about installing IMS Metadata and the associated tables and indexes
refer to ArcIMS Metadata Server documentation.

The IMS_METADATA storage parameters control the storage of the ims_metadata feature
class. Four indexes are created on the ims_metadata business table. ArcSDE creates the
following default IMS_METADATA keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.

The IMS metadata keywords are as follows:
##IMS_METADATA

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 100M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 6M
MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 6M) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 6M) NOLOGGING"

F_STORAGE "PCTFREE 30 PCTUSED 70 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 40M)"

F_INDEX_FID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

F_INDEX_AREA "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

F_INDEX_LEN "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 16M)"

S_INDEX_ALL "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 16M) NOLOGGING"

S_INDEX_SP_FID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

COMMENT "The IMS metatdata feature class"

UI_TEXT ""

END

The IMS_METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarelationships business table. Three indexes are created on the

 Chapter 3 Configuring DBTUNE storage parameters 45

ims_metadatarelationships business table. ArcSDE creates the following default
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword is
missing from the dbtune file when it is imported.
##IMS_METADATARELATIONSHIPS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 256K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

END

The IMS_METADATATAGS keyword controls the storage of the ims_metadatatags
business table. Two indexes are created on the ims_metadatatags business table. ArcSDE
creates the following default IMS_METADATATAGS keyword in the DBTUNE table if the
keyword is missing from the dbtune file when it is imported.
##IMS_METADATATAGS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

END

The IMS_METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. One index is created on the ims_metadatathumbnails
business table. ArcSDE creates the following default IMS_METADATATHUMBNAILS
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is
imported.
##IMS_METADATATHUMBNAILS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 4M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 256K) NOLOGGING"

END

The IMS_METADATAUSERS keyword controls storage of the ims_metadatausers business
table. One index is created on the ims_metadatausers business table. ArcSDE creates the
following default IMS_METADATAUSERS keyword in the DBTUNE table if the keyword
is missing from the dbtune file when it is imported.
##IMS_METADATAUSERS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

46 ArcSDE Configuration and Tuning Guide for Oracle

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

The IMS_METADATAVALUES keyword controls the storage of the ims_metadatavalues
business table. Two indexes are created on ims_metadatavalues business table. ArcSDE
creates the following default IMS_METADATAVALUES keyword in the DBTUNE table if
the keyword is missing from the dbtune file when it is imported.
##IMS_METADATAVALUES

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

The IMS_METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex business table. ArcSDE creates the following default
IMS_METADATAWORDINDEX keyword in the DBTUNE table if the keyword is missing
from the dbtune file when it is imported.
##IMS_METADATAWORDINDEX

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 10M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

The IMS_METADATAWORDS keyword controls the storage of the ims_metadatawords
business table. One index is created on the ims_metadatawords business table. ArcSDE
creates the following default IMS_METADATAWORDS keyword in the DBTUNE table if
the keyword is missing from the dbtune file when it is imported.
##IMS_METADATAWORDS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

 Chapter 3 Configuring DBTUNE storage parameters 47

Setting the storage format—the GEOMETRY_STORAGE
parameter
ArcSDE for Oracle provides three spatial data storage formats. The
GEOMETRY_STORAGE parameter indicates which geometry storage method is to be used.
The GEOMETRY_STORAGE parameter has the following values:

• ArcSDE compressed binary stored in LONG RAW data type. This is the default spatial
storage method of ArcSDE for Oracle.

Set the GEOMETRY_STORAGE parameter to SDEBINARY if you wish to store your
spatial data in this format. If the GEOMETRY_STORAGE parameter is not set, the
SDEBINARY format is assumed.

• ArcSDE compressed binary stored as a BLOB data type. This data type can be replicated
through Oracle Advanced Replication.

Set the GEOMETRY_STORAGE parameter to SDELOB if you wish to store your
spatial data in this format. If you wish to make this format the default, set the
GEOMETRY_STORAGE parameter to SDELOB in the DEFAULTS configuration
keyword.

• Oracle Spatial geometry type. Available starting at Oracle8i, this object-relational model
extends the database model to include an SDO_GEOMETRY type in the Oracle DBMS.

Set the GEOMETRY_STORAGE parameter to SDO_GEOMETRY if you wish to store
your spatial data in this format. If you wish to make this format the default, set the
GEOMETRY_STORAGE parameter to SDO_GEOMETRY in the DEFAULTS
configuration keyword.

The default value for GEOMETRY_STORAGE is SDEBINARY.

If all of the feature classes in your database use the same geometry storage method, set the
GEOMETRY_STORAGE parameter once in the DEFAULTS configuration keyword. To
change the default GEOMETRY_STORAGE from SDEBINARY to SDO_GEOMETRY,
the following change is made:
DEFAULTS
GEOMETRY_STORAGE SDO_GEOMETRY
<other parameters>
END

For convenience, three predefined configuration keywords are provided in the dbtune.proto
file to allow the use of each of the supported geometry storage methods. These configurations
are defined as follows:
SDEBINARY
GEOMETRY_STORAGE SDEBINARY
END
##SDELOB
GEOMETRY_STORAGE SDELOB
END
SDO_GEOMETRY
GEOMETRY_STORAGE SDO_GEOMETRY
END

48 ArcSDE Configuration and Tuning Guide for Oracle

Setting the COMPRESS_ROLLBACK_SEGMENT storage
parameter
Periodically compressing the versioned database's state-tree is a required maintenance
procedure. The state-tree can be compressed with either the compress operation of the
sdeversion administration command or the SE_state_compress_tree() C API function.

The transactions of the compress operation tend to be large; we recommend that you create a
separate large rollback segment to contain their changes. The
COMPRESS_ROLLBACK_SEGMENT storage parameter stores the name of a rollback
segment that you have created for this purpose. Add the
COMPRESS_ROLLBACK_SEGMENT storage parameter to the DEFAULTS
configuration keyword.

For more information on creating the rollback segment used for compressing the state-tree,
see Chapter 2, ‘Essential Oracle configuring and tuning’.

Changing the ATTRIBUTE_BINARY storage format
ArcSDE defines attribute columns used to store binary data as LONG RAW or as BLOB.
The default is LONG RAW.

If the storage parameter is not set in the DEFAULTS configuration keyword when a
DBTUNE file is imported by the sdedbtune administration tool, ArcSDE inserts the
ATTRIBUTE_BINARY storage parameter under the DEFAULTS configuration keyword
with a configuration string set to LONGRAW.

Changing the appearance of DBTUNE configuration keywords in
the ArcInfo user interface
Starting in ArcSDE 8.1, ArcSDE introduces two new storage parameters that will support the
ArcInfo user interfaces UI_TEXT and UI_NETWORK_TEXT. ArcSDE administrators can
add one of these storage parameters to each configuration keyword to communicate to the
ArcInfo schema builders the intended use of the configuration keyword. The configuration
string of these storage parameters will appear in ArcInfo interface DBTUNE configuration
keyword scrolling lists.

The UI_TEXT storage parameter should be added to configuration keywords that will be
used to build tables, feature classes, and indexes.

The UI_NETWORK_TEXT storage parameter should be added to parent network
configuration keywords.

Adding a comment to a configuration keyword
The COMMENT storage parameter allows you to add informative text that describes such
things as a configuration keyword's intended use, the last time it was changed, or who created
it.

 Chapter 3 Configuring DBTUNE storage parameters 49

LOG FILE configuration keywords
Log files are used by ArcSDE to maintain temporary and persistent sets of selected records.
Whenever a user connects to ArcSDE for the first time, the SDE_LOGFILES and
SDE_LOGFILE_DATA tables and indexes are created.

You may create a configuration keyword for each user that begins with the
LOGFILE_<username>. For example, if the user’s name is STANLEY, ArcSDE will search
the DBTUNE table for the LOGFILE_STANLEY configuration keyword. If this
configuration keyword is not found, ArcSDE will use the storage parameters of the
LOGFILE_DEFAULTS configuration keyword to create the SDE_LOGFILES and
SDE_LOGFILE_DATA tables.

ArcSDE always creates the DBTUNE table with a LOGFILE_DEFAULTS configuration
keyword. If you do not specify this configuration keyword in a DBTUNE file imported by
the sdedbtune command, ArcSDE will populate the DBTUNE table with default
LOGFILE_DEFAULTS storage parameters. Further, if the DBTUNE file lacks some of the
LOGFILE_DEFAULTS configuration keyword storage parameters, ArcSDE supplies the
rest. Therefore, the LOGFILE_DEFAULTS configuration keyword is always fully
populated.

If a user-specific configuration keyword exists, but some of the storage parameters are not
present, the storage parameters of the LOGFILE_DEFAULTS configuration keyword are
used.

Creating a log file configuration keyword for each user allows you to position their sde log
files onto separate devices by specifying the tablespace the log file tables and indexes are
created in. Most installations of ArcSDE will function well using the
LOGFILE_DEFAULTS storage parameters supplied with the installed dbtune.sde file.
However, for applications making use of sde log files, such as ArcInfo, ArcEditorTM, and
ArcView®, it may help performance by spreading the log files across the file system.
Typically log files are updated whenever a selection set exceeds 100 records.

If the imported DBTUNE file does not contain a LOGFILE_DEFAULTS configuration
keyword, or if any of the log file storage parameters are missing, ArcSDE will insert the
following records:
##LOGFILE_DEFAULTS

LD_INDEX_DATA_ID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LD_INDEX_ROWID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LD_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

LF_INDEXES "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LF_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

UI_TEXT ""

END

The LD_STORAGE and LF_STORAGE parameters that control the storage of the
SDE_LOGFILE_DATA and SDE_LOGFILES tables. By default these tables are created
with Oracle logging turned on (the Oracle NOLOGGING parameter is absent from the
configuration string of these parameters). If you are not using a customized application that
stores persistent log files, you should add NOLOGGING to the LD_STORAGE and

50 ArcSDE Configuration and Tuning Guide for Oracle

LF_STORAGE parameters. ESRI applications accessing ArcSDE data use temporary log
files.

Network class composite configuration keywords
The composite keyword is a unique type of configuration keyword designed to accommodate
the tables of the ArcGIS network class. The network table's size variation requires a
configuration keyword that provides configuration storage parameters for both large and
small tables. Typically, the network descriptions table is very large in comparison with the
others.

To accommodate the vast difference in the size of the network tables, the network composite
configuration keyword is subdivided into elements. A network composite configuration
keyword has three elements: the parent element defines the general characteristic of the
configuration keyword and the junctions feature class, the description element defines the
configuration of the DESCRIPTIONS table and its indexes, and the network element defines
the configuration of the remaining network tables and their indexes.

The parent element does not have a suffix, and its configuration keyword looks like any other
configuration keyword. The description element is demarcated by the addition of the ::DESC
suffix to the parent element's configuration keyword, and the network element is demarcated
by the addition of the ::NETWORK suffix to the parent element's configuration keyword.

For example, if the parent element configuration keyword is ELECTRIC, the network
composite configuration keyword would appear in a DBTUNE file as follows:
##ELECTRIC

COMMENT This configuration keyword is dedicated to the electrical geometric
network class

UI_NETWORK_TEXT "The electrical geometrical network class configuration
keyword"

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

B_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_STORAGE "TABLESPACE FEATURE INITRANS 4 PCTFREE 30 PCTUSED 70 STORAGE
(INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

F_INDEX_FID "TABLESPACE FEATURE_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_INDEX_LEN "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_INDEX_AREA "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

S_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 200M NEXT 20M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

S_INDEX_ALL "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
200M NEXT 20M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

 Chapter 3 Configuring DBTUNE storage parameters 51

S_INDEX_SP_FID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
50M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

##ELECTRIC::DESC

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

B_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

##ELECTRIC::NETWORK

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

52 ArcSDE Configuration and Tuning Guide for Oracle

B_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

Following the import of the DBTUNE file, these records would be inserted into the
DBTUNE table.
SQL> select keyword, parameter_name from DBTUNE;

KEYWORD PARAMETER_NAME
---------------- ----------------
ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE
ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_SHAPE
ELECTRIC B_INDEX_USER
ELECTRIC F_STORAGE
ELECTRIC F_INDEX_FID
ELECTRIC F_INDEX_LEN
ELECTRIC F_INDEX_AREA
ELECTRIC S_STORAGE
ELECTRIC S_INDEX_ALL
ELECTRIC S_INDEX_SP_FID
ELECTRIC A_STORAGE
ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_SHAPE
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE
ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC::DESC B_STORAGE
ELECTRIC::DESC B_INDEX_ROWID
ELECTRIC::DESC B_INDEX_USER
ELECTRIC::DESC A_STORAGE
ELECTRIC::DESC A_INDEX_ROWID
ELECTRIC::DESC A_INDEX_STATEID
ELECTRIC::DESC A_INDEX_USER
ELECTRIC::DESC D_STORAGE
ELECTRIC::DESC D_INDEX_DELETE_AT
ELECTRIC::DESC D_INDEX_STATE_ROWID
ELECTRIC::NETWORK B_STORAGE
ELECTRIC::NETWORK B_INDEX_ROWID
ELECTRIC::NETWORK B_INDEX_USER

 Chapter 3 Configuring DBTUNE storage parameters 53

ELECTRIC::NETWORK A_STORAGE
ELECTRIC::NETWORK A_INDEX_ROWID
ELECTRIC::NETWORK A_INDEX_STATEID
ELECTRIC::NETWORK A_INDEX_USER
ELECTRIC::NETWORK D_STORAGE
ELECTRIC::NETWORK D_INDEX_DELETE_AT
ELECTRIC::NETWORK D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC configuration keyword
storage parameters, the network descriptions table is created with the storage parameters of
the ELECTRIC::DESC configuration keyword, and the remaining smaller network tables are
created with the ELECTRIC::NETWORK configuration keyword.

The NETWORK_DEFAULTS configuration keyword
The NETWORK_DEFAULTS configuration keyword contains the default storage
parameters for the ArcGIS network class. If the user does not select a network class
composite configuration keyword from the ArcCatalog interface, the ArcGIS network is
created with the storage parameters within the NETWORK_DEFAULTS configuration
keyword.

Whenever a network class composite configuration keyword is selected, its storage
parameters are used to create the feature class, table, and indexes of the network class. If a
network composite configuration keyword is missing any storage parameters, ArcGIS
substitutes the storage parameters of the DEFAULTS configuration keyword rather than the
NETWORK_DEFAULTS configuration keyword. The storage parameters of the
NETWORK_DEFAULTS configuration keyword are used when a network composite
configuration keyword has not been specified.

If a NETWORK_DEFAULTS configuration keyword is not present in a DBTUNE file
imported into the DBTUNE table, the following NETWORK_DEFAULTS configuration
keyword is created.
##NETWORK_DEFAULTS

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

COMMENT "The base system initialization parameters for NETWORK_DEFAULTS"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS

PCTINCREASE 0)"

54 ArcSDE Configuration and Tuning Guide for Oracle

F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

F_STORAGE "PCTFREE 30 PCTUSED 70 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

UI_NETWORK_TEXT "The network default configuration"

END

##NETWORK_DEFAULTS::DESC

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"

END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"

 Chapter 3 Configuring DBTUNE storage parameters 55

D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"

END

ArcSDE storage parameters for Oracle Spatial
Several storage parameters exist to determine the storage of a feature class created as an
Oracle Spatial SDO_GEOMETRY type.

The SDO_SRID identifies the Oracle Spatial coordinate reference description. Consult the
Oracle Spatial Users Guide and Reference for a list of supported coordinate references.

ArcSDE provides storage parameters to define fixed values for the Oracle Spatial dimension
information. If you do not define these storage parameters, Oracle Spatial calculates the
dimensions from the data. Oracle Spatial allows you to define up to four dimensions. There
are three basic parameters that are repeated for each dimension, delineated by the number of
the dimension that is appended to the storage parameter's name.

SDO_DIMNAME_<n> stores the dimension’s name.

SDO_LB_<n> stores the dimension’s lower boundary.

SDO_UB_<n> stores the dimension’s upper boundary.

SDO_TOLERANCE_<n> stores the dimension’s precision.

Oracle Spatial provides three different spatial index methods: RTREE, FIXED, and
HYBRID. The default is RTREE. The SDO_INDEX storage parameter lets you set the
spatial index method to one of the methods offered by Oracle Spatial.

The SDO_INDEX_SHAPE storage parameter stores the spatial index’s storage parameters.
The parameters are a quoted string of a list of parameter = value elements that are passed to
the PARAMETERS clause of the Oracle user-defined CREATE INDEX statement.

The SDO_COMMIT_INTERVAL, SDO_LEVEL, SDO_NUMTILES, SDO_MAXLEVEL,
and SDO_ORDCNT storage parameters all affect the configuration of the spatial index.
These are actually Oracle Spatial parameters that have been documented in the Oracle
Spatial Users Guide and Reference. For more information on how to set these parameters,
see that document. You should be aware that in some cases Oracle will calculate the values
for you based on the values of the spatial data being indexed. It is recommended that you use
the Oracle defaults before setting these values yourself.

The ArcSDE SDO_VERIFY storage parameter determines whether the geometry data
fetched from Oracle Spatial feature class should be examined and, if necessary, corrected.

Listed below is an ArcSDE DBTUNE configuration with storage parameters set to store a
feature class created with an Oracle Spatial column.
##ORACLE_SPATIAL_FC

GEOMETRY_STORAGE SDO_GEOMETRY

56 ArcSDE Configuration and Tuning Guide for Oracle

B_STORAGE "TABLESPACE BUSINESS PCTFREE 10 PCTUSED 90
INITRANS 4 STORAGE(FREELISTS 4 INITIAL 512000 NEXT
512000 MINEXTENTS 1 MAXEXTENTS 100 PCTINCREASE 0)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 512000 NEXT 512000 MINEXTENTS 1 MAXEXTENTS
100 PCTINCREASE 0) NOLOGGING"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 512000 NEXT 512000 MINEXTENTS 1 MAXEXTENTS
100 PCTINCREASE 0) NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_USER "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_ROWID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_STATEID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_INDEX_STATE_ROWID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

SDO_COMMIT_INTERVAL 100
SDO_INDEX_SHAPE "tablespace = spatial_index,initial = 409600, next

= 409600, minextents = 1, maxextents = 1000,
pctincrease = 0, btree_initial = 12384, btree_next
= 4096, btree_pctincrease = 0"

SDO_LAYER_GTYPE "POINT"
SDO_LEVEL 30
SDO_ORDCNT 2
SDO_VERIFY TRUE

SDO_DIMNAME_1 LONGITUDE1
SDO_LB_1 -160.0
SDO_UB_1 20.0
SDO_TOLERANCE_1 0.000050

SDO_DIMNAME_2 LATITUDE2
SDO_LB_2 -68.0
SDO_UB_2 60.0
SDO_TOLERANCE_2 0.000050

SDO_DIMNAME_3 ZVals
SDO_LB_3 0.0
SDO_UB_3 15000.0
SDO_TOLERANCE_3 0.000050

SDO_DIMNAME_4 MVals
SDO_LB_4 0.0
SDO_UB_4 5000.0
SDO_TOLERANCE_4 0.000050

END

Oracle default parameters
By default, Oracle stores tables and indexes in the user’s default tablespace using the
tablespace’s default storage parameters. Determine a user’s default tablespace by querying
the DEFAULT_TABLESPACE field of the USER_USERS system table when connected as

 Chapter 3 Configuring DBTUNE storage parameters 57

that user. As the Oracle DBA, query the DEFAULT_TABLESPACE field of the
DBA_USERS table using a where clause to specify the user.
SQL> connect <user>/<password>
SQL> select default_tablespace from user_users;

or
SQL> connect system/<password>
SQL> select default_tablespace from dba_users where username = <user>;

Obtain a list of tablespace default storage parameters for a tablespace by querying
USER_TABLESPACES.
SQL> connect <user>/<password>
SQL> select * from user_tablespaces where tablespace_name = <tablespace>;

Converting previous versions of SDE storage parameters
into the DBTUNE table

For older versions of the Spatial Database Engine™ (SDE®), the DBTUNE storage
parameters were maintained in the dbtune.sde file. The storage parameters of these previous
versions were mapped directly to each Oracle storage parameters. For example, the ArcSDE
8.0.2 F_TBLSP storage parameter holds the name of the feature table's tablespace.

Beginning at ArcSDE 8.1, storage parameters hold entire configuration strings of the table or
index they represent. For example, the F_STORAGE storage parameter holds the
configuration string of the feature table. Any legal Oracle storage parameter listed to the right
of the columns clause of the Oracle CREATE TABLE statement can be listed in the
F_STORAGE storage parameter. Therefore, the F_STORAGE storage parameter
incorporates all of the ArcSDE 8.0.2 feature table storage parameters.

If you are upgrading to ArcSDE 8.1 or higher from a version of ArcSDE prior to ArcSDE
8.1, the conversion of the dbtune files storage parameters occurs automatically when the
sdesetupora* utility reads the storage parameters from the previous version’s dbtune.sde file.
The import operation of the sdedbtune command will convert a DBTUNE file into current
ArcSDE storage parameters before it writes them to the DBTUNE table. To see the results
you can either use SQL*Plus to list the storage parameters of the DBTUNE table or write the
storage parameters of the DBTUNE table to another file using the export operation of the
sdedbtune command.

58 ArcSDE Configuration and Tuning Guide for Oracle

The following table lists the conversion of ArcSDE 8.0.2 storage parameters to ArcSDE 8.1
storage parameters.

The ArcSDE 8.0.2 business table index storage parameters are converted to ArcSDE 8.1 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into
the ArcSDE 8.1 spatial column index storage parameter B_INDEX_SHAPE. The other ArcSDE 8.1 business
table index storage parameters B_INDEX_ROWID and B_INDEX_USER are also constructed this way.

The ArcSDE 8.0.2 business table and index parameter prefix is "A_". The ArcSDE 8.1 business table and index
parameter prefix is "B_". The ArcSDE 8.0.2 business table storage parameters are converted to the single
ArcSDE 8.1 B_STORAGE storage parameter. The B_STORAGE parameter holds the entire business table’s
configuration string.

ArcSDE 8.1 storage parameters

B_STORAGE "TABLESPACE ROADS
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10
 PCTUSED 90"

ArcSDE 8.0.2 storage parameters

A_TBLSP ROADS

A_INIT 10M
A_NEXT 5M
A_MINX 1
A_MAXX 200
A_PCTI 0
A_ITRANS 5
A_MAXTRS 255
A_PCTFREE 10
A_PCTUSD 90

ArcSDE 8.1 storage parameters

B_INDEX_SHAPE "TABLESPACE ROADS_IX
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10"

ArcSDE 8.0.2 storage
parameters

INDEX_TABLESPACE ROADS_IX

A_IX1_INIT 10M
A_IX1_NEXT 5M
A_MINX 1
A_MAXX 200
A_PCTI 0
A_ITRANS 5
A_MAXTRS 255
A_PCTFREE 10

 Chapter 3 Configuring DBTUNE storage parameters 59

The ArcSDE 8.0.2 feature table index storage parameters are converted to ArcSDE 8.1 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into
the ArcSDE 8.1fid column index storage parameter F_INDEX_FID. The other ArcSDE 8.1 feature table index
storage parameters F_INDEX_AREA and F_INDEX_LEN are also constructed this way.

The ArcSDE 8.0.2 feature table storage parameters are converted to the ArcSDE 8.1 F_STORAGE storage
parameter. The F_STORAGE parameter holds the entire feature table’s configuration string.

ArcSDE 8.1 storage parameters

F_STORAGE "TABLESPACE ROADS_F
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10
 PCTUSED 90"

ArcSDE 8.0.2 storage parameters

F_TBLSP ROADS_F

F_INIT 10M
F_NEXT 5M
F_MINX 1
F_MAXX 200
F_PCTI 0
F_ITRANS 5
F_MAXTRS 255
F_PCTFREE 10
F_PCTUSD 90

ArcSDE 8.1 storage parameters

F_INDEX_FID "TABLESPACE ROADS_F_IX
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10"

ArcSDE 8.0.2 storage
parameters

INDEX_TABLESPACE ROADS_F_IX

F_IX1_INIT 10M
F_IX1_NEXT 5M
F_MINX 1
F_MAXX 200
F_PCTI 0
F_ITRANS 5
F_MAXTRS 255
F PCTFREE 10

60 ArcSDE Configuration and Tuning Guide for Oracle

The ArcSDE 8.0.2 spatial index table storage parameters are converted to ArcSDE 8.1 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 index storage parameters are
converted into the ArcSDE 8.1 storage parameter S_INDEX_ALL. The S_INDEX_SP_FID storage parameter is
converted the same way except ArcSDE 8.0.2 storage parameters S_IX2_INIT and S_IX2_NEXT are used.

The ArcSDE 8.0.2 spatial index table storage parameters are converted to the ArcSDE 8.1 S_STORAGE storage
parameter. The S_STORAGE parameter holds the entire spatial index table’s configuration string.

ArcSDE 8.1 storage parameters

S_STORAGE "TABLESPACE ROADS_S
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10
 PCTUSED 90"

ArcSDE 8.0.2 storage parameters

S_TBLSP ROADS_S

S_INIT 10M
S_NEXT 5M
S_MINX 1
S_MAXX 200
S_PCTI 0
S_ITRANS 5
S_MAXTRS 255
S_PCTFREE 10
S_PCTUSD 90

ArcSDE 8.1 storage parameters

S_INDEX_ALL "TABLESPACE ROADS_S_IX
 STORAGE (FREELISTS 4
 INITIAL 10M
 NEXT 5M
 MINEXTENTS 1
 MAXEXTENTS 200
 PCTINCREASE 0)
 INITRANS 5
 MAXTRANS 255
 PCTFREE 10"

ArcSDE 8.0.2 storage parameters

INDEX_TABLESPACE ROADS_S_IX

S_IX1_INIT 10M
S_IX1_NEXT 5M
S_MINX 1
S_MAXX 200
S_PCTI 0
S_ITRANS 5
S_MAXTRS 255
S_PCTFREE 10

 Chapter 3 Configuring DBTUNE storage parameters 61

The complete list of ArcSDE 8.1 storage parameters

Parameter Name Value Parameter Description Default Value

STATES_LINEAGES_TABLE <string> State_lineages table B_STORAGE

STATES_TABLE <string> States table B_STORAGE

STATES_INDEX <string> States indexes B_INDEX_USER

MVTABLES_MODIFIED_TABLE <string> Mvtables_modified table B_STORAGE

MVTABLES_MODIFIED_INDEX <string> Mvtables_modified index B_INDEX_USER

VERSIONS_TABLE <string> Versions table B_STORAGE

VERSIONS_INDEX <string> Version index B_INDEX_USER

COMPRESS_ROLLBACK_SEGMENT <string> Version compression rollback
segment

Oracle defaults

B_STORAGE <string> Business table Oracle defaults

B_INDEX_ROWID <string> Business table object ID
column index

Oracle defaults

B_INDEX_SHAPE <string> Business table spatial column
index

Oracle defaults

B_INDEX_USER <string> Business table user index(s) Oracle defaults

F_STORAGE <string> Feature table Oracle defaults

F_INDEX_FID <string> Feature table fid column index Oracle defaults

F_INDEX_AREA <string> Feature table area column index Oracle defaults

F_INDEX_LEN <string> Feature table length column
index

Oracle defaults

S_STORAGE <string> Spatial index table Oracle defaults

S_INDEX_ALL <string> Spatial index table first index Oracle defaults

S_INDEX_SP_FID <string> Spatial index table second index Oracle defaults

A_STORAGE <string> Adds table Oracle defaults

62 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

A_INDEX_ROWID <string> Adds table object ID column
index

Oracle defaults

A_INDEX_SHAPE <string> Adds table spatial column index Oracle defaults

A_INDEX_STATEID <string> Adds table sde_state_id column
index

Oracle defaults

A_INDEX_USER <string> Adds table index Oracle defaults

D_STORAGE <string> Deletes table Oracle defaults

D_INDEX_ STATE_ROWID <string> Deletes table sde_states_id and
sde_deletes_row_id column
index

Oracle defaults

D_INDEX_DELETED_AT <string> Deletes table sde_deleted_at
column index

Oracle defaults

LF_STORAGE <string> Sde log files table Oracle defaults

LF_INDEXES <string> Sde log file table column
indexes

Oracle defaults

LD_STORAGE <string> Sde log file data table Oracle defaults

LD_INDEX_DATA_ID <string> Sde log file data table Oracle defaults

LD_INDEX_ROWID <string> SDE log file data table SDE
rowid column index

Oracle defaults

RAS_STORAGE <string> Raster RAS table Oracle defaults

RAS_INDEX_ID <string> Raster RAS table RID index Oracle defaults

BND_STORAGE <string> Raster BND table Oracle defaults

BND_INDEX_COMPOSITE <string> Raster BND table composite
column index

Oracle defaults

BND_INDEX_ID <string> Raster BND table RID column
index

Oracle defaults

AUX_STORAGE <string> Raster AUX table Oracle defaults

AUX_INDEX_COMPOSITE <string> Raster AUX table composite
column index

Oracle defaults

BLK_STORAGE <string> Raster BLK table Oracle defaults

 Chapter 3 Configuring DBTUNE storage parameters 63

Parameter Name Value Parameter Description Default Value

BLK_INDEX_COMPOSITE <string> Raster BLK table composite
column index

Oracle defaults

ATTRIBUTE_BINARY <string> Set this storage parameter to
longraw or blob

longraw

GEOMETRY_STORAGE <string> Set this storage parameter to
sdebinary, sdelob, or
sdo_geometry

SDEBINARY

SDO_COMMIT_INTERVAL integer Specifies the Oracle Spatial
Geometry Types index commit
interval

Use Oracle Default

SDO_DIMNAME_1 String The name of the first dimension
for Oracle Spatial Geometry
Types only

X

SDO_DIMNAME_2 String The name of the second
dimension for Oracle Spatial
Geometry Types only

Y

SDO_DIMNAME_3 string The name of the third
dimension for Oracle Spatial
Geometry Types only

Z

SDO_DIMNAME_4 string The name of the fourth
dimension for Oracle Spatial
Geometry Types only

M

SDO_INDEX string The Oracle Spatial Geometry
Types index type (FIXED,
HYBRID, RTREE)

Oracle Defaults

SDO_INDEX_SHAPE string The Oracle Spatial Geometry
types spatial index storage
parameters

Oracle Default

SDO_LAYER_GTYPE POINT Specifies that the parameter
“LAYER_GTYPE = POINT”
should be used when creating
the spatial index

Set ONLY for single
part POINT data when
using quadtree indexes

SDO_LB_1 real
number

Lower dimension boundary for
Oracle Spatial Geometry Type

Based on extent of
data loaded

SDO_LB_2 real
number

Lower dimension boundary for
Oracle Spatial Geometry Type

Based on extent of
data loaded

64 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

SDO_LB_3 real
number

Lower dimension boundary for
Oracle Spatial Geometry Types
only

Based on extent of
data loaded

SDO_LB_4 real
number

Lower dimension boundary for
Oracle Spatial Geometry Types
only

Based on extent of
data loaded

SDO_LEVEL integer Specifies the desired fixed-size
tiling level for Oracle Spatial
Geometry Types only

Computed by
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L

SDO_MAXLEVEL integer Specifies the maximum tiling
level for Oracle Spatial
Geometry Types only

Computed by
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L

SDO_NUMTILES integer Specifies the number of
variable-sized tiles to be used in
tessellating an object for Oracle
Spatial Geometry Type

Computed by
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L

SDO_ORDCNT integer The number of ordinates in a
row (for Oracle Spatial Schema
Only)

16 (2 for POINT data)

SDO_SRID integer Oracle Spatial coordinate
reference identifier assigned to
the SDO_GEOMETRY column

NULL

SDO_TOLERANCE_1 real
number

The precision of the dimension
for Oracle Spatial Geometry
Type

.0005

SDO_TOLERANCE_2 real
number

The precision of the dimension
for Oracle Spatial Geometry
Type Schema

.0005

SDO_TOLERANCE_3 real
number

The precision of the dimension
for Oracle Spatial Geometry
Types only

.0005

SDO_TOLERANCE_4 real
number

The precision of the dimension
for Oracle Spatial Geometry
Types only

.0005

SDO_UB_1 real
number

Upper dimension boundary for
Oracle Spatial Geometry Type

Based on extent of
data loaded

 Chapter 3 Configuring DBTUNE storage parameters 65

Parameter Name Value Parameter Description Default Value

SDO_UB_2 real
number

Upper dimension boundary for
Oracle Spatial Geometry Type

Based on extent of
data loaded

SDO_UB_3 real
number

Upper dimension boundary for
Oracle Spatial Geometry Types
only

Based on extent of
data loaded

SDO_UB_4 real
number

Upper dimension boundary for
Oracle Spatial Geometry Types
only

Based on extent of
data loaded

SDO_VERIFY boolean If TRUE, ArcSDE will verify
and correct as necessary all
geometries as they are accessed
from the Oracle Spatial
Geometry Type

FALSE

 67

C H A P T E R 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables. Tables

with spatial columns are called standalone feature classes. Attribute-only

(nonspatial) tables are also an important part of any database. This chapter

will describe the table and feature class creation and loading process.

Data creation
There are numerous applications that can create and load data within an ArcSDE Oracle
database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

�� sdelayer—creates and manages feature classes.

�� sdetable—creates and manages tables.

�� sdeimport—takes an existing sdeexport file and loads the data into a feature class.

�� shp2sde—loads an ESRI shapefile into a feature class.

�� cov2sde—loads a coverage, Map LIBRARIAN layer, or an ArcStorm™ layer into a
feature class.

�� tbl2sde—loads an attribute-only dBASE® or INFO™ file into a table.

�� sdegroup—a specialty feature class creation command that combines the features of
an existing feature class into single multipart features and stores them in a new
feature class for background display. The generated feature class is used for rapid
display of a large amount of geometry data. The attribute information is not retained,
and spatial searches cannot be performed on these feature classes.

�� sderaster—creates, inserts, modifies, imports and manages raster data stored in an
ArcSDE database.

68 ArcSDE Configuration and Tuning Guide for Oracle

These are all run from the operating system prompt. Command references for these tools are in the
ArcSDE developer help.

Other applications include:

2. ArcGIS Desktop—use ArcCatalog or ArcToolbox to manage and populate your
database.

3. ArcInfo Workstation—use the Defined Layer interface to create and populate the
database.

4. ArcView 3.2—use the Database Access extension.

5. MapObjects®—custom Component Object Model (COM) applications can be built to
create and populate databases.

6. ArcSDE CAD Client extension—for AutoCAD® and MicroStation® users.

7. Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide some
ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use graphic user
interface like the one found in ArcGIS Desktop. For details on how to use ArcCatalog or
ArcToolbox (another desktop data loading tool), please refer to the ArcGIS books:

�� Using ArcCatalog

�� Using ArcToolbox

�� Building a Geodatabase

Creating and populating a feature class

The general process involved with creating and loading a feature class is:

1. Create the business table.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the
database.

3. Switch the feature class to load_only_io mode (optional step to improve bulk data
loading performance. It is OK to leave feature class in normal_io mode to load data.).

4. Insert the records (load data).

5. Switch the feature class to normal_io mode (builds the indexes).

6. Version the data (optional).

7. Grant privileges on the data (optional).

In the following sections, this process is discussed in more detail and illustrated with some
examples of ArcSDE administration commands usage and ArcInfo data-loading utilities
through the ArcCatalog and ArcToolbox interfaces.

 Chapter 4 Managing tables, feature classes, and raster columns 69

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from scratch
(requiring considerably more effort), or you can create a feature class from existing data such
as a coverage or ESRI shapefile. Both methods are reviewed below with the “from scratch”
method being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command allows you to include a dbtune
configuration keyword containing the storage parameters of the table.

Although the table may be up to 256 columns, ArcSDE requires that only one of those
columns be defined as a spatial column.

In this example, the sdetable command is used to create the ‘roads’ business table.

sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the dbtune configuration keyword (-k) ‘roads’ by user beetle.

The same table could be created with a SQL CREATE TABLE statement using the Oracle
SQL*Plus interface.

create table roads
 (road_id integer,
 name varchar(32),
 shape integer)
 tablespace beetle_data
 storage (initial 16K next 8K);

At this point you have created a table in the database. ArcSDE does not yet recognize it as a
feature class. The next step is to record the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables and thus add a new feature class to the database.

Adding a feature class

After creating a business table, you must add an entry for the spatial column in the ArcSDE
LAYERS system tables before the ArcSDE server can reference it. Use the sdelayer
command with the ‘-o add’ operation to add the new feature class.

In the following example, the roads feature class is added to the ArcSDE database. Note that
to add the feature class, the roads table name and the spatial column are combined to form a
unique feature class reference. To understand the purpose of the –e, –g, and –x options, refer
to the sdelayer command reference in the ArcSDE developer help.

sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p bug -
k roads

If the spatial column of the feature class is stored in either LONG RAW or BLOB ArcSDE
compressed binary format, the feature and spatial index tables are created. The feature class
tables and indexes are stored according to the storage parameters of the roads configuration
keywords in the DBTUNE table. Upon successful completion of the previous sdetable
command—to create a table—and the sdelayer command—to record the feature class in the
ArcSDE system tables—you have an empty feature class in normal_io mode.

70 ArcSDE Configuration and Tuning Guide for Oracle

Switching to load-only mode

Switching the feature class to load-only mode drops the spatial index and makes the feature
class unavailable to ArcSDE clients. Bulk loading data into the feature class in this state is
much faster due to the absence of index maintenance. Use the sdelayer command to switch
the feature class to load-only mode by specifying the ‘-o load_only_io’ operation.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode. However, the grid size can be altered with the -o alter operation. The alter operation
will apply an exclusive lock on the feature class, preventing all modifications by ArcInfo until
the operation is complete.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are several
ways to insert data into a feature class, but probably the easiest method is to convert an
existing shapefile or coverage or import a previously exported ArcSDE sdeexport file directly
into the feature class.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to “overwrite”
data that’s already there. Don't use the init operation on feature classes that already contain
data unless you want to remove the existing data. Here, the shapefile, ‘rdshp’, will be loaded
into the feature class, ‘roads’. Note that the name of the spatial column (‘shape’ in this case)
is included in the feature class (-l) option.

shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, we can also use the cov2sde command:

cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal_io mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients. For
example:

sdelayer -o normal_io -l roads,shape -u beetle -p bug

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process that
allows multiple representations of your data to exist without requiring duplication or copies of
the data. For further information on versioning data, refer to the Building a Geodatabase
book.

In this example, the feature class called ‘states’ will be registered as multiversioned using the
sdetable alter_reg operation.

sdetable -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Granting privileges on the data

Once you have the data loaded, it is often necessary for other users to have access to the data
for update, query, insert, or delete operations. Initially, only the user who has created the
business table has access to it. In order to make the data available to others, the owner of the

 Chapter 4 Managing tables, feature classes, and raster columns 71

data must grant privileges to other users. The owner can use the sdelayer command to grant
privileges. Privileges can be granted to either another user or to a role.

In this example, a user called ‘beetle’ gives a user called ‘spider’ SELECT privileges on a
feature class called ‘states’.

sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are:

SELECT. The user may query the selected object(s) data.

DELETE. The user may delete the selected object(s) data.

UPDATE. The user may modify the selected object(s) data.

INSERT. The user may add new data to the selected object(s) data.

If you include the -I grant option, you also grant the recipient the privilege of granting other
users and roles the initial privilege.

Creating and loading feature classes from existing data

We have reviewed the “from scratch” method of creating a schema and then loading it. This
next section reviews how to create feature classes from existing data. This method is simpler
since the creation and load process is completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport, includes a
‘-o create’ operation, which allows you to create a new feature class within the ArcSDE
database. The create operation does all of the following:

�� Creates the business table using the input data as the template for the schema

�� Adds the feature class to the ArcSDE system tables

�� Puts the feature class into load-only mode

�� Inserts data into the feature class

�� When all the records are inserted, puts the feature class into normal_io mode

shp2sde

shp2sde converts shapefiles into ArcSDE feature classes. The spatial column definition is read
directly from the shapefile. You can use the shpinfo command to display the shapefile column
definitions. As part of the create operation, you can specify which spatial storage format you
wish to adopt for the data storage by including a ‘–k’ option that references to a configuration
keyword containing a GEOMETRY_STORAGE parameter.

In this example, Oracle Spatial geometry type is selected as the storage format by including
the configuration keyword ‘GEOMETRY_TYPE’. The keyword GEOMETRY_TYPE,
defined in the DBTUNE table, also sets a number of additional parameters for this storage
type, which will be used to create the Oracle Spatial index. See Appendix D, ‘Oracle Spatial
Geometry Type’, for additional information on Oracle Spatial and specifics about how it can
be configured.

72 ArcSDE Configuration and Tuning Guide for Oracle

shp2sde -o create -f rdshp -l roads,shape -k GEOMETRY_TYPE -u beetle -p bug

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table. Use
the ArcInfo describe command to display the ArcInfo data source column definitions.

In this example, an ArcStorm library, ‘roadlib’, is converted into the feature class, ‘roads’.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100 -e
l+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In this
example, the roadexp ArcSDE export file is converted into the feature class ‘roads’.

sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature class to other users.

Appending data to an existing feature class

A common requirement for data management is to be able to append data to existing feature
classes. The data loading commands described thus far have a –o append operation for
appending data. A feature class must exist prior to using the append operation. If the feature
class is multiversioned, it must be in an “open” state. It is also advisable to change the feature
class to load-only I/O mode and pause the spatial indexing operations before loading the data
to improve the data-loading performance. The spatial indexes will be re-created when the
feature class is put back into normal I/O mode. Because the feature class has been defined, the
metadata exists and is not altered by the append operation.

In the shp2sde example below, a previously created ‘roads’ feature class appends features
from a shapefile, ‘rdshp2’. All existing features, loaded from the ‘rdshp’ shapefile, remain
intact, and ArcSDE updates the feature class with the new features from the rdshp2 shapefile.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation updates
the table and index statistics required by the Oracle cost-based optimizer. Without the
statistics the optimizer may not be able to select the best execution plan when you query the
table. For more information on updating statistics, see Chapter 2, ‘Essential Oracle
configuring and tuning’.

Creating and populating raster columns
Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To create a
raster column, you will first need to convert the image file into a format acceptable to
ArcSDE. Then after the image has been converted to the ESRI raster file format, you can
convert it into a raster column.

 Chapter 4 Managing tables, feature classes, and raster columns 73

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To estimate the size of your raster data, refer to Appendix A, ‘Estimating the size of your
tables and indexes’.

To understand how ArcSDE stores rasters in Oracle, refer to Appendix B, ‘Storing raster
data’.

Creating views
There are times when a DBMS view is required in your database schema. ArcSDE provides
the sdetable create_view operation to accommodate this need. The view creation is much like
any other Oracle view creation. If you want to create a view using a layer and you want the
resulting view to appear as a feature class to client applications, include the feature class's
spatial column in the view definition. As with the other ArcSDE commands, see the ArcSDE
developer help for more information.

Exporting data
As with importing data, there are also client applications that export data from ArcSDE as
well. With ArcSDE, the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between Oracle
instances and to other supported DBMSs

sde2shp—creates an ESRI shapefile from an ArcSDE feature class

sde2cov—creates a coverage from an ArcSDE feature class

sde2tbl—creates a dBASE or INFO file from a DBMS table

Schema modification
There will be occasions when it is necessary to modify the schema of some tables. You may
need to add or remove columns from a table. The ArcSDE command to do this is sdetable
with the –o alter option. ArcCatalog offers an easy-to-use tool for this and other schema
operations such as modifying the spatial index (grids) and adding and dropping column
indexes.

Using the ArcGIS Desktop ArcCatalog and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use ArcCatalog
to create feature datasets and feature classes within those feature datasets to use specific
ArcGIS Desktop functionality. For that reason, we provide a glimpse of how to use
ArcToolbox and ArcCatalog to load data. Please refer to the ArcInfo documentation on
ArcCatalog, ArcToolbox, and the geodatabase for a full discussion of these tools.

74 ArcSDE Configuration and Tuning Guide for Oracle

Loading data

You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm layers
into geodatabase feature classes with the ArcToolbox and ArcCatalog applications.
ArcToolbox provides a number of tools that enable you to convert data from one format to
another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde, cov2sde, and
sdeimport, accept configuration keywords. By using a configuration keyword with the
GEOMETRY_STORAGE storage parameter, the user can choose one of the three Oracle
spatial storage methods supported by ArcSDE.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase. Since the geodatabase is maintained by an ArcSDE service operating on an
Oracle database, you can store the resulting feature class using the Oracle Spatial geometry
type format. This keyword has set the GEOMETRY_STORAGE parameter to
SDO_GEOMETRY, indicating to ArcSDE that the resulting feature class should be stored as
an Oracle Spatial geometry type.

The shapefile CASNBRST.shp file is converted to feature class vtest.CASNBRST using ArcToolbox.

 Chapter 4 Managing tables, feature classes, and raster columns 75

Versioning your data

ArcCatalog also provides a means for registering data as multiversioned. Simply right-click
the feature class to be registered as multiversioned and select the Register As Versioned
context menu item.

A feature class is registered as multiversioned from within ArcCatalog.

Granting privileges

Using ArcCatalog, right-click on the data object class and click on the Privileges context
menu. From the Privileges context menu assign privileges specifying the username and the
privilege you wish to grant to or revoke from a particular user.

76 ArcSDE Configuration and Tuning Guide for Oracle

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset, feature
class, or table, to assign privileges to other users or roles.

Creating a raster column with ArcCatalog

Using ArcCatalog, right-click on the database connection, point to Import, and click on Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want to
change the coordinate reference system, tile size, pyramids option, or configuration keyword.
Click OK to import the raster file into the Oracle database.

 Chapter 4 Managing tables, feature classes, and raster columns 77 Chapter 4 Managing tables, feature classes, and raster columns 77

78 ArcSDE Configuration and Tuning Guide for Oracle

Registering a business table
When ArcSDE registers a business table it performs a number of tasks depending on the type
of registration that was requested. The duration of the registration process is dependent on the
type of registration, whether the business table has a spatial column, and the table's number of
rows.

Registering a table as NONE or USER maintained

Tables registered as NONE, are registered without a row id column.

Tables registered as USER, are registered with a row id column whose values you must
maintain.

If the registration type is NONE or USER, ArcSDE merely adds a record to the
SDE.TABLE_REGISTRY that references the business table. For tables registered as type
USER the name of the row id is also added to the SDE.TABLE_REGISTRY entry.

Registration of these two registration types happens rather quickly.

Registering a table as SDE maintained

Tables registered as type SDE, must have a row id column that uniquely identifies the rows of
the table.

NOTE: Tables registered by the geodatabase must be registered to ArcSDE as SDE
maintained. If the geodatabase determined that the table has already been registered by
ArcSDE as SDE maintained, the geodatabase uses the SDE maintained row id. In this case the
geodatabase registration process is relatively inexpensive.

If a table was registered with a USER maintained row id, the geodatabase alters its row id
registration to be SDE maintained.

By default the geodatabase adds a column called objectid to the table and registers it as SDE
maintained. If the objectid column already exists, and is not currently registered as SDE
maintained, the geodatabase will add a new column to the table called objectid_1.

Creating a new SDE maintained row ID column

If the row id column does not exist when the table is registered, ArcSDE adds a column of
type INTEGER, with a NOT NULL constraint. If the table contains rows, ArcSDE populates
the column with unique ascending values starting at your specified minimum id value. The
minimum id value defaults to 1 if left unspecified. It then creates a unique index on the
column called R<registration_id>_SDE_ROWID_UK, where registration_id is the
registration identifier ArcSDE assigns the table when it was registered.

ArcSDE creates a sequence generator called R<registration_id> and uses it to generate the
next value of the row id column whenever a value is added to the column.

Adding a column to an Oracle table that already contains rows can result in row migration,
when the free space of the Oracle data block (as defined by PCTFREE) is consumed by the
newly added column values.

 Chapter 4 Managing tables, feature classes, and raster columns 79

Therefore, if at all possible, it is better to include the row id column as part of the table's
original definition or add it before data is inserted into the table. If, however, you must add the
row id column to a table that contains data, consider exporting the table afterwards, truncating
the rows, and importing the data back into the table. Doing so eliminates the excessive disk
I/O generated by fetching the migrated rows.

Using an existing column

If the row id column already exists, ArcSDE confirms that the column was defined as an
integer. If it is not, the registration fails.

Next, ArcSDE confirms that the column has a unique index. If the column was defined with a
non-unique index, ArcSDE drops the index.

In the event that the column does not have a unique index, ArcSDE attempts to create a
unique index on the column. If the index creation fails because the column contains non-
unique values, ArcSDE repopulates the column with ascending values beginning at 1 and then
creates the unique index. ArcSDE names the unique index
R<registration_id>_SDE_ROWID_UK.

Next, ArcSDE verifies that the column has been defined as NOT NULL.

If the column was defined as NULL, ArcSDE attempts to redefine it as NOT NULL. If this
action fails, ArcSDE repopulates the column and defines it as NOT NULL.

Repopulating the column either because it contained null values, or because it contained non-
unique values is an expensive process, especially if the table contains more than a 100,000
records.

Therefore if at all possible you should not rely on ArcSDE to perform this operation. You
instead define the row id column as not null when the table is created and create your own
unique index on it. At the very least, you should insure that the column is populated with
unique integer values.

Analyzing the tables

Tables registered as type SDE must have statistics.

ArcSDE queries the LAST_ANALYZED value from the USER_TABLES view for the
business table to determine if it has has been analyzed. If the value is NULL, ArcSDE
analyzes the table with compute statistics.

Note: This is a very expensive operation for tables with more than a million rows. Therefore,
to speed up the registration process, you should analyze large tables before you register them.
For tables containing more than about 100000 rows, sampling from 1 to 10 percent of the
rows, should be adequate. The larger the table, the smaller the sampling percentage can safely
be.

If the business table contains a spatial column that is stored as binary, (see Appendix C for
more information), the feature table and spatial index table must also have statistics. ArcSDE
also queries the LAST_ANALYZED value of the USER_TABLES view for these tables.

If the value is not null, these tables and their indexes are analyzed.

80 ArcSDE Configuration and Tuning Guide for Oracle

Again, if they are very large (more than 1 million rows), you should analyze them yourself
using a percentage of the total number of records.

Use the Oracle ANALYZE statement to analyze the tables.

ANALYZE TABLE <table_name>
ESTIMATE STATISTICS SAMPLE <percent_value> PERCENT;

If the statistics exist, but are stale, (many changes have occurred since the last time the
statistics were created), you should reanalyze the tables. In this case ARCSDE will not
analyze the tables since it will detect that the LAST_ANALYZE value is not null.The
ArcSDE SQL statements have been written to take advantage of the Oracle cost based
optimization.

Under cost based optimization Oracle uses the statistics of the tables it is querying to select the
most optimal execution plan.

Note: The registration of an SDE maintained row id column is the only time the ArcSDE
automatically analyzes the business, adds and deletes tables and their indexes as well as the
feature table and the spatial index table if they exist.

Registering a table as multiversioned

To perform versioned edits on a business table, the table must be registered as multiversioned.
When tables are registered as multiversioned the associated adds and deletes table are created
and analyzed. These tables as their name implies, store the records of the business that are
added and deleted. They are named A<registration_id> and D<registration_id>.

81

C H A P T E R 5

Connecting to Oracle

Beginning with ArcSDE 8.1, ArcSDE client applications can connect to either

an ArcSDE service or directly to an Oracle instance (at least Oracle 8.1). The

direct connection capability, added for the ArcSDE 8.1 release, was achieved

by embedding the ArcSDE application server technology into the ArcSDE

client software. Any application programmed with the functionality of the

ArcSDE 8.1 C libraries can connect directly to an Oracle instance.

Locating the ArcSDE Components
ArcSDE client applications that connect to an ArcSDE service send spatial requests to the
service. The ArcSDE service converts the spatial requests into SQL statements and submits
them to the Oracle instance. Upon receiving results from the Oracle instance, the ArcSDE
service converts the result into spatial data recognizable to the ArcSDE client.

At ArcSDE 8.1, the functionality of the ArcSDE service has been linked into the ArcSDE
C API, allowing ArcSDE client applications to connect directly to Oracle instances. Spatial
requests are converted to SQL statements by the ArcSDE client applications instead of the
ArcSDE service.

Setting up an ArcSDE Service

Before you can connect to an ArcSDE service, you must install and configure the ArcSDE
product. The sde user must be created, and the sde setup program (sdesetupora*) must be run
to create and populate the ArcSDE system tables and required stored procedures. In addition,
ArcSDE must be able to reference an ArcSdeServer license from a license manager accessible
through the network.

Setting up a direction connection

Since a direct connection to an Oracle instance does not require the presence of an ArcSDE
service, the ArcSDE product does not need to be installed. You are, however, required to run
the ArcSDE setup program (sdesetupora*), which creates the necessary ArcSDE system tables
in the sde users schema. Also, to obtain a read–write connection to the Oracle database, an
ArcSDE client application must reference a valid ArcSdeServer license. If an ArcSdeServer
license cannot be referenced, access is restricted to read-only.

82 ArcSDE Configuration and Tuning Guide for Oracle

The ArcSDE setup program is located in the bin directory of all ESRI products capable of
connecting to ArcSDE. If you do not already have one, an ArcSdeServer license can be
obtained from ESRI Customer Support.

Oracle Net8 Listener

To connect directly to an Oracle instance, you must configure the Oracle Net8 listener process,
on the database host, to listen for Oracle client connections. You must also install the Oracle
client on your client machine. The sections that follow provide details on how to set up the
client and server machines to perform a direct connection to an Oracle instance.

For more information regarding an ArcSDE service, refer to the ArcSDE Installation Guide for
installation instructions and the Managing ArcSDE Services for configuration and connection
instructions.

All ArcSDE client applications, such as ArcMap or ArcCatalog, function the same way
regardless of whether a user connects to an ArcSDE service or directly to an Oracle instance.
The only difference occurs during the entry of the connection information.

Creating the Net8 listener service
To establish a connection to an Oracle instance that is running on a remote computer, you must
configure and start the Oracle Net8 listener process. Oracle allows you to configure the Net8
listener to listen on just about any network protocol that might exist in today's diverse
networking environments. The discussion and the examples provided in this document are
limited to the widely used TCP/IP network protocol.

The examples below are taken from an Oracle8i installation. Please refer to your Oracle
installation documentation for your specific Oracle release.

Oracle offers a Java-based GUI on both the Windows NT and the UNIX server that simplifies
the task of configuring the Oracle listener process. Provided is a simple walk-through of the
Oracle Net8 Configuration Assistant. For a more in-depth discussion of the Net8 Configuration
Assistant and other Oracle utilities, please refer to the Oracle online documentation.

On Windows NT launch the Net 8 Configuration Assistant by clicking Programs>Oracle>
OraHOME>Net8 Configuration Assistant. On UNIX systems launch the Net8 Configuration
Assistant by running $ORACLE_HOME/bin/netca.

After the ‘Welcome’ panel appears choose the Listener configuration radio button and click
Next.

 Chapter 5 Connecting to Oracle 83

The Net8 Configuration Assistant edits the listener.ora file normally located under the
%ORACLE_HOME%\network\admin folder on Windows NT and the
$ORACLE_HOME/network/admin directory on UNIX systems.

The Net8 Configuration Assistant will create a listener in the listener.ora file that looks
something like this:

LISTENER.ORA Network Configuration File:
D:\Oracle\Ora81\network\admin\listener.ora
Generated by Oracle configuration tools.
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = bruno)(PORT = 1521))
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = bruno.esri.com)
 (ORACLE_HOME = D:\oracle\ora81)
 (SID_NAME = bruno)
)
)

Note: For this particular listener.ora file, the GLOBAL_DBNAME parameter was manually
entered after the Net8 Configuration Assistant added the listener service. You may also need to
manually enter this parameter to the listener.ora file, depending on your network configuration.

If you receive an ORA 12514 error when you try to connect to the listener service, manually
enter the GLOBAL_DBNAME parameter.

On the ‘Listener Configuration, Listener Name’ panel, enter the listener name. Unless you are
an experienced Oracle DBA, use the LISTENER default value. Click Next and continue on to
the ‘Listener Configuration, Select Protocols’ panel.

84 ArcSDE Configuration and Tuning Guide for Oracle

Select the TCP protocol from the Available Protocols list and click the right arrow button to
move the TCP protocol into the Selected Protocols list. Click Next to configure the TCP/IP
network protocol adapter from the Listener Configuration, TCP/IP Protocol.

Choose the default ‘Use standard port number of 1521’ radio button. If you know that another
software product is already using this port number, enter a different one.

Click Next to continue on to the ‘Listener Configuration, More Listeners?’ panel. You should
not need to configure another listener, so choose the "No" radio button and click Next.

Click Next on the ‘Listener Configuration Done’ panel, which returns to the ‘Welcome’ panel.
Click Finish.

Starting the Net8 listener service
Before you can connect to the listener service, you must start it. To start the listener service on
Windows NT, click the Start>Settings>Control panel and double-click the Services icon in the
Control Panel window. After the Services dialog box appears, scroll down until you find the
Oracle Net8 listener service and click the Start button.

 Chapter 5 Connecting to Oracle 85

To start the Net8 listener process on a UNIX platform as the Oracle user, issue the lsnrctl start
command at the operating system prompt.

$ lsnrctl start

LSNRCTL for Solaris: Version 8.1.7.0.0 - Production on 12-JAN-2001 16:37:15

(c) Copyright 1998 Oracle Corporation. All rights reserved.

Starting /ultra1/app/ora817/product/8.1.7/bin/tnslsnr: please wait...

TNSLSNR for Solaris: Version 8.1.7.0.0 - Production
System parameter file is
/ultra1/app/ora817/product/8.1.7/network/admin/listener.ora
Log messages written to
/ultra1/app/ora817/product/8.1.7/network/log/listener.log
Trace information written to
/ultra1/app/ora817/product/8.1.7/network/trace/listener.trc
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=ultra)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ultra)(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=ultra)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Solaris: Version 8.1.7.0.0 - Production
Start Date 12-JAN-2001 16:37:15
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level admin
Security OFF
SNMP OFF
Listener Parameter File
/ultra1/app/ora817/product/8.1.7/network/admin/listener.ora
Listener Log File
/ultra1/app/ora817/product/8.1.7/network/log/listener.log
Listener Trace File
/ultra1/app/ora817/product/8.1.7/network/trace/listener.trc
Services Summary...
 ora817 has 1 service handler(s)
The command completed successfully

Net8 Client installation and configuration
To make a direct connection to an Oracle instance, Oracle Client must be installed on your
client machine. Oracle Client is shipped with the Oracle Enterprise Edition. Oracle Client

86 ArcSDE Configuration and Tuning Guide for Oracle

includes the installation of the Oracle Net8 software, which is necessary to connect to an
Oracle server.

After you start the Oracle Universal installer and complete the preliminary panels, choose the
Oracle Client radio button from the Available Products panel and click Next.

 Chapter 5 Connecting to Oracle 87

From the ‘Installation Types’ panel select the Custom radio button and click Next.

From the ‘Available Product Components, Oracle 8i Client’ panel you need to check at least
the Net8 Products and Net8 Client boxes to enable a direction connection to an Oracle
instance. Click Next to proceed to the Installation Summary panel and click Next again to
install the Net8 products of the Oracle Client. Immediately following the installation of the
software, the Net8 Configuration Manager appears, which allows you to configure the net
service name needed to connect to a remote Oracle database.

88 ArcSDE Configuration and Tuning Guide for Oracle

When the ‘Net8 Configuration Assistant Welcome’ panel appears, check ‘Perform typical
configuration’ and click Next to add the net service name. Alternatively, you can click Cancel
to defer the configuration of the net service name. Clicking Cancel returns control to the Oracle
Universal Installer installation summary panel.

On Windows NT you can launch the Net 8 Configuration Assistant by clicking
Programs>Oracle> OraHOME>Net8 Configuration Assistant. On UNIX systems you can
launch the Net8 Configuration Assistant by running $ORACLE_HOME/bin/netca.

On the ‘Net8 Configuration Assistant Welcome’ panel that follows, click the ‘No, I will create
net service names myself. I would like to create the first one now.’ radio button.

From the ‘Net8 Configuration Assistant: Welcome’ panel, choose the ‘Local Net Service
Name configuration’ radio button and click Next to proceed to the 'Net Service Name
Configuration, Database Version' panel.

 Chapter 5 Connecting to Oracle 89

Choose the ‘Oracle database or service’ radio button. Click Next and continue to the ‘Net
Service Name Configuration, Service Name’ panel.

Although the service name can be anything you want it to be, for some Oracle applications
such as Advance Replication it is required to be the global database name. By convention, you
should use the global database name as it is easier to keep track of. The global database name
is formed by concatenating the DB_NAME (database name) and the DB_DOMAIN (database
domain) together and separating them by a period. In this example the database name, bruno,
and the database domain, esri.com, concatenate to form the global database name
bruno.esri.com. Click Next to continue to the Net Service Name Configuration, Select
Protocols panel.

90 ArcSDE Configuration and Tuning Guide for Oracle

In the previous section we created a listener that listens on the TCP/IP protocol. Select the TCP
protocol and click Next to proceed to the ‘Net Service Name Configuration, TCP/IP Protocol’
panel.

Enter the host name of the computer that the database is running on. The host name should be
listed in your NIS hosts file. You can also enter the computer’s IP address, although you
should set up and use the host name since it is easier to recognize. Choose the ‘Use the
standard port number of 1521.’ radio button unless you were forced to use a different port
number when you configured the listener. Click Next to continue to the Net Service Name
Configuration, Test.

 Chapter 5 Connecting to Oracle 91

You should test the connection of the service name that you have just created. You can return
later to test the connection, but if you are ready to test it now, choose the ‘Yes, perform a test’
radio button and click Next. The ‘Net Service Name Configuration, Connecting’ panel will
appear with the results of the connection test. If the Details dialog box does not contain
‘Connecting…Test successful.’, there is a problem with the connection. The first thing to look
at is the username and password used to make the connection. By default, the Net8
Configuration Assistant defaults to scott as the username and tiger as the password. If
necessary, click Change Login to use a different username and password. When you click OK
on the 'Change Login' panel, Net8 Configuration Assistant will attempt the connection again. If
you are still unable to connect to the listener, contact Oracle Technical Support for help.

Following a successful connect test, click Next to proceed to the 'Net Service Name
Configuration Done' panel. Click Next on this panel to return to the 'Welcome' panel. Click
Finish. The tnsnames.ora file has been updated and can now be referenced by an Oracle client
software product to make a connection to an Oracle database.

The entry made to the tnsnames.ora file by the Net* Configuration Assistant should look
something like this:

BRUNO.ESRI.COM =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = bruno)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = bruno.esri.com)
)
)

92 ArcSDE Configuration and Tuning Guide for Oracle

Connecting to Oracle from an ArcSDE client application
ArcSDE applications have the option of connecting to Oracle through an ArcSDE service.
With this option, the ArcSDE giomgr service establishes a gsrvr process to manage the transfer
of data between the database server and the client application. There will be one gsrvr process
for each database connection established by any ArcSDE application.

ArcSDE applications that have linked in the client libraries of the ArcSDE for Oracle C API
are also capable of connecting to Oracle instances without using the ArcSDE giomgr service.
The function of the gsrvr process is incorporated directly into the application itself. This is
called direct connect.

ESRI applications software use the same graphical user interface for getting database
connection parameters regardless of the type of database you are connecting to, or the method
of connecting.

In ArcCatalog, the SDE Connections dialog box, shown below, appears after double-clicking
on the Database Connections in the Contents pane, followed by double-clicking on Add SDE
Connection.

The contents of the Server, Service, User Name, and Password fields depend upon whether
you use a direct connection or connect through the ArcSDE server. For Oracle connections,
regardless of method, you must leave the Database field blank. (The field is present in the
dialog box because other database engines may require it.)

Whether connecting to the Oracle database through an ArcSDE service or connecting directly,
you must:

�� install the Oracle Client software on the local machine.

 Chapter 5 Connecting to Oracle 93

�� configure the Oracle Client tnsnames.ora file with the net service name containing
the connection information to the remote Oracle.

�� set up certain environment variables or registry variables in the ArcSDE
environment.

The previous sections in this chapter provide specific information on this installation and
configuration of Oracle. Refer to the following sections for specific information on setting up
the ArcSDE environment for various configurations of ArcSDE service and Oracle database
server.

Configuring the ArcSDE /etc directory

As an option, files can be created in the /etc directory of ArcSDE client application to capture
error messages and establish a default Oracle connection environment. An ArcSDE client
application will search for the etc directory under the SDEHOME environment variable.

SDEHOME is determined by an ArcSDE client application using the following search criteria:

1. If the SDEHOME environment variable is set in the system environment, the etc
directory, if one exists, must be located in the directory defined by the value of the
SDEHOME environment variable.

2. If the SDEHOME environment variable is not set and the ARCHOME environment
variable is, the etc directory, if one exists, must be located in the directory defined by the
value of the ARCHOME environment variable.

3. Finally, if neither the SDEHOME nor the ARCHOME environment variables is set, the
etc directory must be located in the directory defined by the registry key value of
HKEY_LOCAL_MACHINE / SOFTWARE / ESRI / ArcInfo / Desktop / 8.0 /
SourceDir.

If the etc directory exists, upon initial connection to the Oracle instance, the ArcSDE
application creates the sde.errlog file within the etc directory. All subsequent error messages
will be written to this file. Therefore, if you cannot establish a connection to the Oracle
instance, look in the sde.errlog for possible further information as to what the problem may be.

Locating the dbinit.sde file (Unix and Windows)

You may optionally use the dbinit.sde file to set environment variables for a specific client
machine. For example, including this line within the dbinit.sde file:

ORACLE_SID = TESTDB01

will override any existing setting of the ORACLE_SID variable once an ArcSDE client
application starts.

To locate the dbinit.sde file on Unix systems, the following directories are searched in order:

1. $SDEHOME/etc

2. $ARCHOME/etc

94 ArcSDE Configuration and Tuning Guide for Oracle

Resolving the Oracle server

If the Oracle server is running on the same host as the client application, and you do not wish
to create a tnsnames entry for it, then you must specify the name of the instance using the
ORACLE_SID environment variable.

If the Oracle server is running on a different host from the client application, you must create a
tnsnames entry describing the host and Oracle instance. With the tnsnames entry established,
you may

1. (Windows) set the LOCAL system variable to refer to the tnsnames entry and log in using
the “username/password” syntax;

2. (Unix) set the TWO_TASK environment variable to refer to the tnsnames entry and log in
using the “username/password” syntax;

3. Use the syntax “username/password@<tnsentry>” when logging in.

Resolving system or environment variables

System variables for Windows are resolved in the following priority order:

1. dbinit.sde is checked to see if it sets either LOCAL or ORACLE_SID

2. If not set within dbinit, the LOCAL system variable is checked

3. ORACLE_SID environment variable

4. If a service is used, then the following registry key is checked:

HKEY_LOCAL_MACHINE / SOFTWARE / ESR I / ArcInfo / ArcSDE / 8.0 / ArcSDE for
Oracle / ORACLE_SID

Choosing a service vs. a direct connection

To connect to the ArcSDE server using a service, you must first create the service with the
sdeservice command and then start the service with the sdemon command. Refer to the
Managing ArcSDE Services manual for more information on how to do this.

After the service is started you specify the host on which the service is running in the Server
field and specify the service name running on that host in the Service field of the login screen.
If the service is running on the same host as the client application, you may leave the Server
field blank.

 Chapter 5 Connecting to Oracle 95

Examples of a direct connection
In the examples that follow, we assume that the ORACLE_SID is “GEODATA”, the
username is “surveyor” and the password is “theodolite”. Note that the password is not
displayed in the dialog box, but is echoed as a sequence of asterisks. If the example uses a
tnsnames entry, we assume that it will be “GEODATA”, the same as the ORACLE_SID.
(Making the tnsnames entry the same as the ORACLE_SID is common practice.)

Example 1 – Local connection

To make a direct connection to an Oracle instance running on your local machine, you would
do the following:

1. Set the ORACLE_SID environment variable to name the Oracle instance on the local
machine that you want to connect to.

2. Fill in the database login parameters as follows:

 Server

 Service sde:oracle

 Database

 User Name surveyor

 Password theodolite

Since neither TWO_TASK nor LOCAL are set, the ArcSDE service attempts to connect to an
Oracle instance running on the local machine only.

Example 2 – Remote connection using LOCAL or TWO_TASK

To make a direct connection to an Oracle instance running on another host you would do the
following

1. Create a tnsnames entry, for example GEODATA

2. Set TWO_TASK (Unix) or LOCAL (Windows) equal to “GEODATA”

3. Fill in the database login parameters as follows:

 Server

 Service sde:oracle

 Database

 User Name surveyor

 Password theodolite

The ArcSDE server uses the information in the LOCAL or TWO_TASK variable to reference
the tnsnames entries. From the tns entry, the system knows which host to connect to.

96 ArcSDE Configuration and Tuning Guide for Oracle

Example 3 – Remote connection without using LOCAL or TWO_TASK

To make a direct connection to an Oracle instance running on another host without using
LOCAL or TWO_TASK, you would do the following:

1. Create a tnsnames entry, for example GEODATA

2. Fill in the database login parameters as follows:

 Server

 Service sde:oracle

 Database

 User Name surveyor

 Password theodolite@GEODATA

The tnsnames entry is explicitly given this time, which is necessary since it is not specified by
the TWO_TASK or LOCAL environment variables.

Example of connecting through an ArcSDE service
In the examples that follow, we assume that the ORACLE_SID is “GEODATA”, the Server is
“geoserver”, the Service is “esri_sde”, the username is “surveyor” and the password is
“theodolite”. If the example uses a tnsnames entry, we assume that it will be the same as the
ORACLE_SID, that is, it will be “GEODATA”.

Example – Connecting to a service running on a different server

To connect to Oracle through a service running on another host you would do the following:

1. Create a tnsnames entry, for example GEODATA on the remote host

2. Use sdeservice to create the esri_sde service on the geodata host and sdemon to start it.

3. Fill in the database login parameters as follows:

 Server geoserver

 Service esri_sde

 Database

 User Name surveyor

 Password theodolite@GEODATA

The client application uses the Server value to establish a connection to the ArcSDE service
running on that server. From that host it uses the GEODATA tns entry to create a connection
to the database. Note that in this configuration, the client application, the ArcSDE service and
the Oracle database server can be running on three separate machines.

 Chapter 5 Connecting to Oracle 97

Troubleshooting direct connection problems
Some of the more common problems that occur when you try to establish a direct connection
to Oracle are listed below.

Oracle server was not started

Symptom: You try to connect to the Oracle instance, and you receive:

ORA 01034.

Cause: The Oracle instance has not been started.

Solution: Start the Oracle instance.

Oracle listener was not started

Symptom: You try to connect to the Oracle instance, and you receive:

ORA-12541: TNS:no listener.

Cause: The Oracle listener has not been started.

Solution: Start the Oracle listener.

Oracle username or password are incorrect

Symptom: You try to connect to an Oracle instance, and you receive:

ORA-01017: invalid username/password; logon denied error

Cause: Either the username or the password is incorrect.

Solution: Connect the username or password and try again. If you cannot remember the
password, connect to Oracle as the DBA and change the password with the
ALTER USER command. If you cannot remember the username, connect to
Oracle as the DBA and list the available usernames from the DBA_USERS
table.

Net service name does not exist

Symptom: You try to connect to an Oracle instance, and you receive:

 ORA-12154: TNS:could not resolve service name

Cause: Oracle could not find the net service name in the tnsnames.ora file.

Solution: Check the spelling of the net service name and reenter if misspelled. If you are
sure you entered the net service name correctly, examine the net service name in
the tnsnames.ora file to make sure that it was entered correctly.

Net service name cannot be resolved in listener

Symptom: You try to connect to an Oracle instance, and you receive:

98 ArcSDE Configuration and Tuning Guide for Oracle

ORA-12514: TNS:listener could not resolve SERVICE_NAME given in
connect descriptor

Cause: Although the net service name was found in the tnsnames.ora file, and
connection information was able to locate the listener service running on the
remote host, Oracle was not able to locate the Oracle instance.

Solution: A common cause of this problem is the absence of the GLOBAL_DBNAME
parameter in the listener.ora file. Examine the listener.ora file. If the
GLOBAL_DBNAME parameter is missing, add it and restart the listener again.
Retry the connection.

The Oracle instance is not at least an Oracle 8.1 instance

Symptom: You try to connect to an unsupported instance, and you receive:

ERROR in clearing lock and process tables.
Error: -51
DBMS error code: 6550
ORA-06550: line 1, column 219:
PLS-00201: identifier 'SDE.PINFO_UTIL' must be declared
ORA-06550: line 1, column 219:
PL/SQL: Statement ignored

Couldn't initialize shared memory, error = -51.
Cannot Attach to Shared Memory -1

Cause: The Oracle instance is not at least Oracle 8.1, or the sdesetupora* program was
not run. Make sure the sdesetupora* program has been run. The sdesetupora*
program will only run on at valid, supported Oracle instance.

Solution: Check your Oracle version by querying the dynamic view V$VERSION. If the
Oracle version is not at least Oracle 8.1, you cannot establish a direct connection.

99

C H A P T E R 6

National language support

Storing data in an ArcSDE Oracle database using character sets other than

US7ASCII requires some extra configuration on both the client and the server.

This section provides guidelines for configuring both the Oracle database and

the ArcSDE client environment to enable the use of character sets other than

US7ASCII.

Oracle database character sets
If you are using UNIX, by default an Oracle database is created with a US7ASCII character
set. On Windows NT the default character set is WE8ISO8859P1. The character set is selected
when the database is created with the CREATE DATABASE statement and cannot be
changed afterwards. To change a character set the database must be re-created and the data
reloaded. Consult the Oracle National Language Support Guide for your Oracle release to
determine the character set that is right for your data.

Setting the NLS_LANG variable on the client
Once the ArcSDE Oracle database has been created with the proper character set, data can be
loaded into it using a variety of applications such as ArcGIS Desktop and the ArcSDE
administration tools shp2sde and cov2sde. To properly convert and preserve the characters,
you must set the Oracle NLS_LANG variable in the client applications system environment.

For instance, using ArcToolbox installed on Windows NT to convert a coverage containing
German attribute data into an Oracle database on a UNIX server created with the Western
European character set WE8ISO8859P1, you would set the NLS_LANG to
GERMAN_GERMANY.WE8ISO8859P1. To set the NLS_LANG variable for ArcToolbox,
click Start, Settings, and Control Panel. Double-click on the System icon and select the
Environment tab after the System menu appears. Click on the System Variables scrolling list
and enter NLS_LANG in the Variable: input line and
GERMAN_GERMANY.WE8ISO8859P1 in the Value: input line. Click Set and then OK.

Setting the NLS_LANG variable for Windows NT clients

Be careful setting the NLS_LANG on the Windows NT platform because there are actually
two different codepage environments on this platform. Windows applications such as ArcGIS
Desktop run in the Windows American National Standards Institute (ANSI) codepage
environment, while ArcSDE administration tools and C and Java API applications invoked

100 ArcSDE Configuration and Tuning Guide for Oracle

from the MS–DOS Command Prompt run in the original equipment manufacturer (OEM)
codepage environment. Some languages require two different NLS_LANG settings for the
language character set component for each of these codepage environments.

For instance, in the above example the NLS_LANG variable would be set to
GERMAN_GERMANY.WE8PC850 if the data was loaded from the MS–DOS Command
Prompt using the ArcSDE administration tool shp2sde. If you use both Windows applications
and MS–DOS applications together, then you should set the NLS_LANG variable for MS–
DOS applications when you open the MS–DOS Command Prompt using the MS–DOS SET
command.

SET NLS_LANG = GERMAN_GERMANY.WE8PC850

To determine if your language requires a separate language character set, consult the Oracle
National Language Support Guide for your Oracle release.

For more information on ArcInfo national language support, refer to the National Language
Support section of the Systems Administration chapter found on your ArcDoc™ CD.

101

C H A P T E R 7

Backup and recovery

Data safety is ensured by implementing, testing, and verifying an appropriate

database backup and recovery procedure. Oracle provides a number of choices

for backing up a database including exporting data, selective backup of

tablespaces, or copying database files.

This chapter presents a summary of the Oracle concepts that are essential for

understanding backup and recovery, plus specific guidelines that may be

applied to your ArcSDE installation.

For details, refer to the Oracle Backup and Recovery Guide for your Oracle

release.

Recording Database Changes
Oracle manages changes to its contents and structure in such a manner as to guarantee
recovery of the database to the last committed transaction after any single point of failure. This
guarantee is at the heart of Oracle’s architecture and this statement says a great deal.

To the last committed transaction means that, once control is returned to the user after
executing a COMMIT statement, Oracle guarantees that the committed data has been written
to disk in some form and is recoverable.

Single point of failure means that any single file or process can fail without losing the contents
of any committed transaction. If a data file is lost or corrupted, the contents of the redo logs
guarantee that the data is recoverable. If a control file breaks, the other control files ensure that
the information remains safe. A process may be killed, but committed data is never lost.

Such a guarantee requires a high level of coordination between database processes and
database files. Files “know about” each other and may not be deleted or changed without
properly coordinating through the Oracle instance.

This section briefly describes the role of the various Oracle database files in backup and
recovery to achieve this guarantee.

102 ArcSDE Configuration and Tuning Guide for Oracle

Control files

The physical structure of the database—the arrangement of physical files on disk—is recorded
in the control file. The control file is so important for the purpose of database consistency that
Oracle maintains multiple identical copies of it.

If the database loses one of its control files, the database will halt. You will have to do a
SHUTDOWN ABORT on the database instance prior to recovering the database.

Oracle recommends that any database instance should use at least three identical control files,
and further recommends that each control file be placed on a physically separate disk drive
under a separate disk controller. While a single hardware failure may cause the loss of one
control file, this strategy ensures the safety of the remaining control files.

The locations and names of the control files are controlled by the init.ora parameter:

 CONTROL_FILES

Note: If you add or drop a data file or an online redo log file, or alter file locations, the
contents of the control file change as this information is recorded. Since the backup version of
the control file no longer matches the current database structure, you should take an immediate
backup of the new control file.

Redo log files

Every change that is made to an Oracle database—such as creating or altering schema objects
or inserting or manipulating data—is recorded in the online redo log file. This happens
automatically in addition to the normal action of writing the changes to the appropriate data
file or control file.

Changes to the database are recorded in the order that they occur. If, for example, you create a
table to store GIS data, then insert some data into that table, the create table action will be
recorded first, and the insert data action will be recorded second.

Recording the order of the actions is very important and individual steps may not be neglected.
In this example, if the table creation step is skipped or performed at the wrong time, the data
insertion step will fail.

Eventually, the database change information recorded in a redo log file accumulates to some
preset maximum. Oracle then performs a log switch, closing the current online redo log file
and opening the next one.

Oracle uses the online redo log files in a circular fashion, reusing the first log file after it closes
the last log file. If three online log files are specified, for example, Oracle will use the log files
in order: 1, 2, 3, 1, 2, 3, 1, … This means that earlier information stored in any of the online
redo log files will be lost when the file is used again.

Archiving redo log files

Oracle provides for the online redo log files to be copied to an offline location immediately
after a log switch. This is called archiving the redo log files.

 Chapter 7 Backup and recovery 103

When an Oracle database is run in ARCHIVELOG mode, redo log information is accumulated
indefinitely by copying the online redo log file to an offline location with a unique name based
on the current log sequence number.

For example, as Oracle switches through online redo log files in order (1, 2, 3, 1, 2,…) the
following archived redo log files (reflecting log sequence numbers 15, 16, 17, 18, 19,…) might
be created:

LOG0015.ARC
LOG0016.ARC
LOG0017.ARC
LOG0018.ARC
LOG0019.ARC

etc.

In ARCHIVELOG mode, the total amount of redo log information is limited only by the total
file space available at the archive destination. When an Oracle database is run in
NOARCHIVELOG mode, the online redo log files are not copied, so that the amount of
usable redo log information is limited to the contents of the current online redo log files.

Which archive mode should you use?

Often databases are created and initially loaded under the NOARCHIVELOG mode because,
should a media failure occur, the same effort is required to restore the database regardless of
whether the database was reloaded using the archived redo log files or the original source data.
In addition, a huge amount of log file data is created, and maintaining this data is unnecessary
since the original source data is readily available.

After the initial data load is complete and the database goes into production, the changes
become difficult to re-create. Switch to ARCHIVELOG mode to ensure that point-in-time
recovery of the database is available in the event of a media failure.

Operate the database in NOARCHIVELOG mode and make frequent backups only if you
understand the risk of data loss and can afford to re-enter the changes made since the last
backup.

Note: Because of the risk of losing committed transactions in the event of media failure, ESRI
does not recommend using NOARCHIVELOG mode for normal operation of an ArcSDE
database.

Switching from NOARCHIVELOG to ARCHIVELOG

An Oracle database created in NOARCHIVELOG mode can be switched to ARCHIVELOG
mode. To make this change, shut down the database using the NORMAL, IMMEDIATE or
TRANSACTIONAL priority. (Do not use ABORT.):

SVRMGR> connect internal
Connected.
SVRMGR> shutdown normal
Database closed.
Database dismounted.
Oracle instance shut down.

Before switching to ARCHIVELOG mode, Oracle recommends that you make a full backup
of the database.

104 ArcSDE Configuration and Tuning Guide for Oracle

To the init.ora file, add the LOG_ARCHIVE_START and LOG_ARCHIVE_DEST
parameters.

LOG_ARCHIVE_START = TRUE
LOG_ARCHIVE_DEST = <pathname_to_archives>/arch%t_%s.dbf

Setting LOG_ARCHIVE_START to true causes the ARCH process to archive the online redo
log files automatically. If you do not set this parameter or set it to false, you will have to
manually archive the log files. For information on how to perform a manual archive, consult
the Oracle Server Administrator’s Guide for your Oracle release.

After you have backed up the Oracle database, switch the database to ARCHIVELOG mode:

$ svrmgrl

Oracle Server Manager Release 3.1.6.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

SVRMGR> startup mount
Total System Global Area 245317008 bytes
Fixed Size 64912 bytes
Variable Size 103677952 bytes
Database Buffers 131072000 bytes
Redo Buffers 10502144 bytes
Database mounted.
SVRMGR> alter database archivelog;
Statement Processes
SVRMGR> alter database open;
Statement processed.
SVRMGR>

Note: After the database successfully reopens in ARCHIVELOG mode, you should shut it
down again and make another full backup. If you don’t, your last full backup will have
recorded that the database was in NOARCHIVELOG mode, and you will not be able to apply
the online redo log files following the restoration of the backup.

Sizing the redo log files

If you have created small online redo log files, you should consider creating new, larger redo
log files.

Every time that Oracle switches the log file, it first performs a checkpoint in which the contents
of changed blocks within the database buffer cache are written to disk. Changes to the
database are always suspended while checkpoint processing is taking place.

In a large multiuser system where many changes are being made, the checkpoint process may
involve practically the entire database buffer cache and should, therefore, be put off for as long
as possible. Where the number of database changes is small, checkpoint processing will be
insignificant.

If the database is configured with only three large online redo log files without mirroring—the
default configuration—you should create more log file groups and mirror them before you
switch the database to ARCHIVELOG mode.

 Chapter 7 Backup and recovery 105

Additional log file groups helps smooth out the archiving process by enabling the archive
process to finish copying a log file to the archive destination before the database needs to make
the log file current again. If the database must make a log file current before the archive
process has finished copying it, the database will wait until the archive is finished before
continuing processing.

Refer to Chapter 2, Essential Oracle configuring and tuning for guidance on configuring the
online redo logs.

For details on commands used to manage redo log files, refer to the Administrator’s Guide for
your Oracle release.

Database backup
To back up your ArcSDE Oracle database, you must copy these files to an offline location:

�� Control files

�� Data files

�� giomgr.defs, dbinit.sde, and services.sde files

�� Archived redo log files

You should make at least three copies of the control files with each backup because of their
importance in ensuring database consistency. Because control files are comparatively small,
there is negligible cost in doing do.

Remember that the redo log files are essential for bringing the data files from an earlier state to
a later state. Between any two points in time, the redo logs must be found in an unbroken
sequence if database recovery is to succeed.

ESRI recommends that you maintain at least two copies of all archived redo logs for as far
back in time as may be reasonably necessary for database recovery. The two copies should be
stored on physically distinct media—separate disk drives, for example, or a disk drive and a
tape drive.

If you intend to purge the archived redo log files from their location on disk, be sure that you
have a second backup copy of each archived redo log file before purging.

This strategy of multiple backups of the archived redo log files helps guard against multiple
media failure, which is not as rare as it might seem. Some tape drives, for example, fail to
detect bit errors until you attempt to restore a file, when it may be too late.

You only need to make a single copy of each data file with each backup as long as you
carefully maintain multiple copies of archived redo logs.

Note: The online redo log files are not necessary for backup. If the current online redo log file
fails, committed information still exists in memory, which Oracle writes to the data files when
a checkpoint is issued. Oracle issues a checkpoint automatically when you shutdown a
database instance with NORMAL, IMMEDIATE or TRANSACTIONAL priority. Before
shutting down a database with ABORT priority you should force a checkpoint with the
ALTER SYSTEM … CHECKPOINT command if at all possible.

106 ArcSDE Configuration and Tuning Guide for Oracle

Hot backup

Backing up an Oracle database while the database instance is running is called a hot backup. If
you plan to take a hot backup, you must operate your database in ARCHIVELOG mode.

Enter the ALTER TABLESPACE … BEGIN BACKUP command prior to the backup of each
tablespace, which tells Oracle that a hot backup is being taken. If this command is not issued,
the hot backup will appear to succeed but it may be useless for restoring the database. To finish
the hot backup, for each tablespace enter the ALTER TABLESPACE … END BACKUP
command.

Changes to data are recorded and held in the rollback segment until they are no longer needed
by any outstanding transaction. Taking a hot backup prevents the release of rollback segment
data until the ALTER TABLESPACE … END BACKUP command is issued.

Therefore, the rollback segment must be large enough to accommodate changes made during
the hot backup. If the rollback segment runs out of space, a transaction will fail with an ORA-
1555 error:

ORA-1555: snapshot too old (rollback segment too small)

While the hot backup will succeed despite this error, changes made to the database may need
to be reentered.

You may avoid this error by taking a hot backup during times of low database activity or by
ensuring that your rollback segments are large enough to accommodate data changes made
during backup.

You do not need to shutdown the ArcSDE server process (giomgr) prior to making a hot
backup.

For details on hot backup refer to the Oracle Backup and Recovery Guide for your Oracle
release.

Cold backup

Backing up an Oracle database while the database instance is shutdown is called a cold
backup. Managing a cold backup is simpler than a hot backup and less prone to error.

If you run the database in NOARCHIVELOG mode, a cold backup is your only option.
Running the database in ARCHIVELOG mode will enable you to use a cold backup to recover
a database to the latest committed transaction.

Database export

You can use Oracle’s export utility to supplement a full backup. If changes are made to a
known set of data objects between full backups, you can export the objects.

However, the export utility should only be used on data objects that are not changing during
the export and on all data objects that are closely related. For example, if you use export to

 Chapter 7 Backup and recovery 107

back up a business table, you should also capture the related spatial index, feature and delta
tables in the same backup.

ESRI does not recommend that you use the export utility as your only backup method.

You can also back up the entire Oracle database with the Oracle export utility and then make
cumulative and incremental backups.

For more information on the export, utility refer to the Oracle Utilities manual for your Oracle
release.

Frequency of backups

Base the frequency of your backups on the rate at which the data in your database is changing.
The more changes that occur, the more frequently backups should occur.

If your Oracle database is operating under ARCHIVELOG mode, you have several variations
that you may add to your backup strategy in addition to the periodic full backup. Databases
operating under the NOARCHIVELOG mode are restricted to full backups with the possible
addition of Oracle export files.

For more information on different Oracle database backup strategies, refer to the Oracle
Backup and Recovery Guide for your Oracle release.

Regardless of which archiving mode you are using, you should make regular full backups of
the Oracle database. A full backup should include the Oracle database and, if you have started
an ArcSDE service, the giomgr.defs, dbinit.sde, and services.sde files.

Scripting the backup

Once you have decided upon your backup strategy, the commands that are entered through the
system prompt or through SQL*Plus may often be scripted.

ESRI recommends using a script for backup purposes whenever possible.

Executing the backup commands from a Unix shell script, or a Windows batch file will help
ensure that the database is being backed up consistently and that all intended steps are being
followed.

Be sure to update the script whenever the physical structure of the database changes, for
instance whenever you add a data file or move a redo log file.

For examples of backup scripts refer to the Oracle Backup and Recovery Guide for your
Oracle release.

Database recovery
To recover a database after any failure, Oracle takes these steps:

1. Reads the init.ora file to determine the names and locations of the control files.

108 ArcSDE Configuration and Tuning Guide for Oracle

2. Reads the control files to verify their consistency with each other and to determine the
physical file structure of the database.

3. Opens each data file mentioned in the control file to determine whether that data file is
current and reflects the latest committed change or is in need of recovery.

4. Opens each redo log file in sequence and applies the information found there to each data
file, as necessary, to bring each data file to the state where it contains all its committed
transactions.

It is possible to recover a database by combining current data files with older data files restored
from backup, since Oracle selectively applies changes from the redo log files to all files that are
not current. However, this strategy succeeds only if an unbroken sequence of redo log files is
available to bring the older data files up to date.

Database failure and recovery modes

If the database has lost a control file, the database is recovered by replacing the lost control file
with a copy of a current control file.

If the database has lost one or more data files, the database is recovered by, first, replacing the
lost data file(s) with backup copies and then using the redo logs (online or archived) to make
the restored copies current. If the backup copies are restored to different locations from the
original files they are intended to replace, you must use the ALTER DATABASE RENAME
FILE command to tell the Oracle instance where the restored files are to be found.

If the database has lost the current online redo log, the database instance will halt when it
attempts to commit more transactions. No data will have been lost, except that the latest
transaction will not be committed and may need to be reentered when the database comes back
up. However, the current online redo log file will have to be replaced and a backup of the
database should immediately be taken.

If the database has lost any archived redo logs, the database instance will continue to function,
as it will have no knowledge of the loss. However, the ability to recover the database in the
event of a second media failure or file loss may be compromised. A fresh backup should be
taken if the archived redo logs are lost.

For detailed information on the recovery of an Oracle database, refer to the Oracle Backup and
Recovery Guide for your Oracle release.

Note: ESRI strongly recommends that you test your backup procedure by building a
functioning database instance from backup files before an emergency arises. If you have just
loaded your database, you should make a full backup and then recover the database from the
backed up files to ensure the recovery process will work when you need it.

108

C H A P T E R 8

Replication

An ArcGIS geodatabase can be modified to work with Oracle Advanced
Replication. It is possible to create a virtual geodatabase by linking a remote
read-only geodatabase to a master geodatabase site. The tables within the
virtual geodatabase are replicated at each site, and changes made to the tables
on the master site are propagated across the link to the read-only site. Thus,
users viewing at either site see the changes after they have been propagated.

An ArcGIS geodatabase can be modified to work with Oracle read-only snapshot replication.
This section discusses the setup and configuration of an ArcGIS geodatabase for read-only
snapshot replication.

For an in depth discussion of Oracle replication, refer to the Oracle Replication and Oracle
Replication Management API Reference for your Oracle release.

Setting up advanced replication
The replication of a geodatabase requires the installation of the Oracle Advanced Replication
option and configuration of the replication environment on both sites.

Installing Oracle Advanced Replication
Using replication requires the installation of the Oracle Enterprise Server with the Advanced
Replication option at both sites. For more information on the installation of Oracle, refer to
the Oracle Installation Guide for your Oracle release.

Replication Manager
You should include the Replication Manager as part of your installation of the Oracle
Enterprise Manager. The Replication Manager complements the scripts and stored
procedures provided by ESRI, allowing you to monitor the status of the distributed Oracle
database and the replicated tables at either site.

Adding Advanced Replication init.ora parameters
You should add the following parameters to the Oracle instance init.ora files:
job_queue_processes = 31
job_queue_interval = 15

 Chapter 8 Replication 109

distributed_transactions = 10
open_links = 4

Establishing NET8 communications between databases
Before you can create an Oracle database link, you must configure the NET8 connections
between the databases. Database A must be able to connect to database B, and database B
must be able to connect to database A.

If you did not configure the NET8 listener service with a TCP/IP protocol when you installed
the Oracle Enterprise Server, use the NET8 Assistant to add and start the listener service.
Perform this task at both sites. In this case you are configuring the server component of
NET8 by updating the ORACLE_HOME/network/admin/listener.ora file.

Use the Net8 Assistant at each site to create a net service name alias that contains the
connection parameters to the listener service of the remote site. In this case you are
configuring the client component of the NET8 by updating the tnsnames.ora file. In a
distributed database each remote database is both a client and a server of the other.

Converting LONG RAW data to LOB data
Oracle does not replicate the LONG RAW data type—the ArcSDE default storage for
geometry. However, Oracle replicates the BLOB data type—an alternate ArcSDE storage for
geometry. Therefore, to replicate data that has been stored in LONG RAW columns, you
must convert the data to BLOB. The simplest way to convert an entire geodatabase that
contains LONG RAW columns to one that contains only BLOB columns is to perform an
ArcCatalog copy/paste into a newly created geodatabase.

Follow these steps:

1. Create a new Oracle database.

2. Create the tablespaces of geodatatabase including the sde tablespace.

3. Create the sde user and grant the privileges to it according to instructions provided in
Chapter 2, ‘Essential configuring and tuning for Oracle’.

4. Edit the SDEHOME/etc/dbtune.sde file. In the DEFAULTS configuration keyword set
the GEOMETRY_STORAGE parameter to SDELOB and the ATTRIBUTE_BINARY
parameter to BLOB. Search the remainder of the dbtune.sde file and change all
occurrences of the GEOMETRY_STORAGE parameter to SDELOB and the
ATTRIBUTE_BINARY parameter to BLOB.

5. Run the sdesetupora* install operation. The sde metadata tables that are normally created
with a LONG RAW data type are created instead with BLOB data type. To confirm this
connect to Oracle as the sde user with SQL*Plus and describe the
GDB_OBJECTCLASSES table. The EXTPROPS column should have been created
with a blob data type.

$ sqlplus sde/sde

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Jun 27 15:43:45 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

110 ArcSDE Configuration and Tuning Guide for Oracle

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> describe gdb_objectclasses
Name Null? Type
--- -------- -------------------------
-
ID NOT NULL NUMBER(38)
DATABASENAME VARCHAR2(32)
OWNER NOT NULL VARCHAR2(32)
NAME NOT NULL VARCHAR2(160)
ALIASNAME VARCHAR2(160)
MODELNAME VARCHAR2(160)
CLSID NOT NULL VARCHAR2(38)
EXTCLSID VARCHAR2(38)
EXTPROPS BLOB
SUBTYPEFIELD VARCHAR2(32)
DATASETID NUMBER(38)

SQL>

6. Start ArcCatalog and connect to the geodatabase containing the LONG RAW data types
and the new geodatabase that will contain data with BLOB data types. Right-click on an
object from the ‘LONG RAW’ geodatabase and select Copy. Right-click the ‘BLOB’
geodatabase and select Paste, and the object is copied into the BLOB geodatabase. Do
this for each object until all the objects are copied into the new geodatabase. To confirm
that the data is being created with BLOB data types, connect to Oracle as a data user and
describe one of its feature tables and examine the POINTS column.

$ sqlplus gisuser1/gisuser1

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Jun 27 16:06:23 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> describe f1
Name Null? Type
--- -------- -------------------------
FID NOT NULL NUMBER(38)
NUMOFPTS NOT NULL NUMBER(38)
ENTITY NOT NULL NUMBER(38)
EMINX NOT NULL NUMBER(64)
EMINY NOT NULL NUMBER(64)
EMAXX NOT NULL NUMBER(64)
EMAXY NOT NULL NUMBER(64)
EMINZ NUMBER(64)
EMAXZ NUMBER(64)
MIN_MEASURE NUMBER(64)
MAX_MEASURE NUMBER(64)
AREA NOT NULL NUMBER(64)
LEN NOT NULL NUMBER(64)
POINTS BLOB

SQL>

Granting privileges to remote schema users
Oracle requires remote schema users to have privileges granted directly to them. Oracle will
not honor privileges granted to remote users through a role. Therefore, if you normally grant
privileges using roles such as CONNECT and RESOURCE to your schema owners, you will
have to instead grant the privileges assigned by these roles to the schema users. If you fail to

 Chapter 8 Replication 111

do so, Oracle will not be able to successfully execute the CREATE SNAPSHOT statement.
For the correct method of assigning user privileges refer to Chapter 2.

Oracle 8i users require patch 1721870
If you are using Oracle 8i servers you must upgrade to Oracle 8.1.7 and install patch 1721870
which can be downloaded from Oracle. Without this patch you will not be able to create
more than 256 snapshots at any given master site.

Setting up read-only snapshot replication
Read-only snapshot replication allows you to link a snapshot site to a master site and receive
from the master site. Users connected to the read-only snapshot site cannot change the tables
that have been replicated. Only users connected to the master site are able to edit the
replicated tables. All of the tables listed in the SDE.TABLE_REGISTRY and the
SDE.LAYERS tables are replicated. Only the tables owned by the SDE user that need to
store the changes made to the geodatabase are replicated. The remainder of the sde user’s
tables store the changes of a user session and cannot be replicated because users edit these
tables at both the master site and the read-only snapshot site.

Duplicating the tables of a geodatabase
As an option, Oracle will copy the rows of a table from the master definition site to the
snapshot site when the snapshots are created at the snapshot site. Copying the rows of the
large tables of a GIS database can require a lot of network I/O. Therefore, the stored
procedures rep_util_snapshot.create_sde_repobjects and
rep_util_snapshot.create_user_repobjects create the snapshots with the ‘on prebuilt table
without reduced precision’ clause. When the snapshots are created Oracle compares the
definitions of the tables to ensure that they are the same.

Duplicating the data using the Oracle export/import utilities is usually more efficient than
having the large tables of your GIS database traverse the network when the snapshots are
created. To duplicate an Oracle database in its entirety, use the database export option.
Otherwise, export the schema of each user that owns data to replicated. If you choose to
duplicate schemas, rather than the entire Oracle database, you must duplicate the schema of
the sde user that owns the geodatabase metadata tables.

Creating the replication environment
In the snapshot_replication folder the rossetup.sql SQL script installs and executes the stored
procedures of the reputil_master and reputil_snapshot packages. The stored procedures of
these packages are installed and executed as the sys user, so you need to be the database
administrator to run the rossetup.sql script.

Updating rossetup.sql

Before you run the rossetup.sql script you must update the variables that define your
distributed database environment.

112 ArcSDE Configuration and Tuning Guide for Oracle

user0

A data user is an Oracle user that owns registered tables in the geodatabase you are about to
replicate. If you have more than one data user, you will have to define and assign values to
additional variables such as user1 and user2.

user_password0

The data user’s password is needed to connect as the data user to create the snapshot logs at
the master site.

sys_password

The sys password is needed to connect as the sys user. The password for the sys user is
assumed to be the same at both the master site and snapshot site.

The sys user creates and owns the rep_util_master package at the master site and the
rep_util_snapshot package at the snapshot site. The packages contain stored procedures and
functions designed for the setup of read-only snapshot replication. The sys user grants
execute privileges on the packages to the public.

The sys user creates the t_constraints and t_constraint_list types used by the
rep_util_master.create_sde_pkeys stored procedure that creates primary keys on SDE tables.

system_password

The password of the system user is needed to connect as the system user. The system user
creates the replication administration user at both the master site and snapshot site. The
password is assumed to be the same at both sites.

sde_password

The password of the sde user is needed to connect as the sde user. The sde user creates
primary keys and snapshot logs on its tables.

master_site

The Oracle NET8 network service name used by users at the snapshot site to connect to the
master site. Review ‘Establishing NET8 communications between databases’ above to
establish and test your network service names.

snapshot_site

The Oracle NET8 network service name used by users at the master site to connect to the
snapshot site. Review ‘Establishing NET8 communications between databases’ above to
establish and test your network service names.

default_tablespace

The default tablespace that will be used for the creation of the replication administration
users. The default tablespace is assumed to be the same at both the master site and snapshot
site.

 Chapter 8 Replication 113

temporary_tablespace

The temporary tablespace that will be used for the creation of the replication administration
users. The temporary tablespace is assumed to be the same at both the master site and
snapshot site.

masdef_site_gdb_name

The master site’s global database name that can be found with the query:
select * from global_name

using SQL*Plus while connected to the master site’s database.

snapshot_site_gdb_name

The snapshot site’s database name that can be found with the query:
select * from global_name

using SQL*Plus while connected to the snapshot site’s database.

group_name

The replication group is created to hold the replicated objects of the geodatabase. The objects
include the metadata tables of the SDE user with the exception of the tables that support log
files and user session data and all the business tables, delta tables, and feature class tables of
the users that own schema within the geodatabase.

Running rossetup.sql

Once you have updated the variables with your replication environment, connect to the sys
user with SQL*Plus and run rossetup.sql.
$ sqlplus sys/manager

SQL*Plus: Release 8.1.7.0.0 - Production on Mon Jun 25 10:26:46 2001
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> @rossetup

The rossetup.sql script performs the following tasks:

1. Connects as the sys user at the master site.

2. Creates the t_constraints and t_constraint_list objects for use by the
rep_util_master.create_sde_pkeys stored procedure that creates the primary keys on
SDE tables that lack them. Read-only replication requires that all replicated tables have
primary keys.

3. Creates the rep_util_master package of stored procedures and functions that the
rossetup.sql script uses to set up read-only snapshot replication at the master site.

4. Connects as the sde user at the master site.

5. Creates the primary keys on the sde tables that need them.

114 ArcSDE Configuration and Tuning Guide for Oracle

6. Connects as the data user.

7. Creates the primary keys on the data user’s tables that need them.

8. Connects as the system user.

9. Creates the replication administration users.

10. Grants privileges to the replication administration users.

11. Registers the replication administration repadmin as the receiver at the master site.

12. Creates the public database link to the snapshot site.

13. Connects as the repadmin user at the master site.

14. Creates a private database link to the master site.

15. Schedules the purge job.

16. Schedules the push job to the snapshot site.

17. Creates the replication group.

18. Adds the sde tables as replication objects to the replication group.

19. Connects as the sde user at the master site.

20. Creates the snapshot logs on the sde tables that have been replicated.

21. Connects as the repadmin user at the master site.

22. Adds the users’ tables to the replication group.

23. Connects as the data user.

24. Creates the snapshot logs on the data user’s table.

25. Connects as the sys user at the snapshot site.

26. Creates the remote_repobjects public synonym.

27. Creates the rep_util_snapshot package, which contains stored procedures and functions
that the rossetup.sql SQL script uses to set up replication at the snapshot site.

28. Connects as the system user at the snapshot site.

29. Create the replication administration users at the snapshot site.

30. Creates the public database link to the master site.

31. Connects as the snapadmin user at the snapshot site.

 Chapter 8 Replication 115

32. Creates the database link to the master site.

33. Schedules the purge job.

34. Schedules the push job to the master site.

35. Connects as the propagator user at the snapshot site.

36. Creates the private database link that connects as the repadmin user at the master site.

37. Connects as the sde user at the snapshot site.

38. Creates the private database link that connects as the proxy_refresher to the master site.

39. Connects as the sys user at the snapshot site.

40. Re-creates the remote_repobjects synonym of the dba_repobjects table at the master site.

41. Connects as the snapadmin user at the snapshot site.

42. Creates the snapshot replication group.

43. Adds the sde tables to the snapshot replication group.

44. Connects as the data user to the snapshot site.

45. Creates the private database link that connects as the proxy_refresher to the master site.

46. Connects as the snapadmin user to the snapshot site.

47. Adds the data user’s tables to the snapshot replication group.

48. Connects as the repadmin user at the master site.

49. Resumes replication.

Once replication resumes, you may edit the geodatabase while connected to either of the
master sites. The master site periodically refreshes the snapshot site with the committed
changes.

Editing a replicated database with ArcMap
Edits made to versioned feature classes, tables, and geometric networks are not visible to the
distributed site until the edits have been saved. The saved edits are visible at the snapshot site
after it has been refreshed. You can refresh the version to see changes made at a remote site.
To refresh the current version of a geodatabase, first enable the Versioning toolbar. Click
Tools and Customize and check Versioning. From the Versioning toolbar click the Refresh
button.

116 ArcSDE Configuration and Tuning Guide for Oracle

Using the Oracle replication manager
The Oracle Replication Manager is a graphical user interface tool that is installed with the
Oracle Enterprise Manager. It is very useful for monitoring and altering your replication
environment. It is particularly useful for monitoring the progress of the rossetup.sql script
during snapshot replication setup.

It is possible to use the replication manager to add additional tables to the replication group.

If you decide to generate replication for a business table that has been registered as
multiversioned, you must replicate the adds and deletes tables. Query
SDE.TABLE_REGISTRY to obtain REGISTRATION_ID, which forms the table names of
the adds and deletes tables.
SELECT REGISTRATION_ID
FROM SDE.TABLE_REGISTRY
WHERE TABLE_NAME = ‘ROADS’
AND OWNER = ‘DAN’;

If the query for the registration ID returns 30, the adds table is A30, and the deletes table is
D30.

If the business table contains a spatial column, you must replicate the feature table and the
spatial index table. To determine the names of these tables, query the SDE.LAYERS table for
the layer ID of the business table’s spatial column.
SELECT LAYER_ID
FROM LAYERS
WHERE TABLE_NAME = ‘ROADS’
AND OWNER =’DAN’

If the query for the layer ID returns 10, the feature table is F10, and the spatial index table is
S10.

 i

Index

A

adds table
sizing of 120

American National Standards
Institute (ANSI) 91

ArcCatalog 22, 24, 29, 62, 67,
69, 128, 129, 149

ArcGIS 24
ArcGIS Desktop 62, 91
ArcInfo 62
ArcInfo Workstation 62
ArcMap 141
ArcSDE CAD Client 62
ArcSDE compressed binary

storage format 15, 29
storing geometry in 2, 38

ArcSDE service 3
ArcSdeServer license 75
ArcStorm libraries 66
ArcToolbox 24, 62, 67, 68, 91,

128, 129
ArcView 3.2 62

B

backup and recovery 4
BLOB 63, 102, 137
business table

sizing of 117

C

checkpoint 7
clients

tuning the spatial index for
141

commit interval 9
configuration keyword 2, 63

DEFAULTS 10
cov2sde 61, 65
coverage 9, 66

D

data block buffers 16
datafile size 13
dbtune configuration keyword 33

DATA_DICTIONARY 12,
17, 34

DEFAULTS 33

GEOMETRY_STORAGE 38,
68

LOGFILE_DEFAULTS 40
NETWORK_DEFAULTS 48

dbtune storage parameter
A_INDEX_ROWID 43
A_INDEX_SHAPE 43
A_INDEX_STATEID 43
A_INDEX_USER 43
A_STORAGE 43
ATTRIBUTE_BINARY 40
AUX_INDEX_COMPOSITE

45
AUX_STORAGE 45
B_INDEX_ROWID 42
B_INDEX_SHAPE 42
B_INDEX_USER 13, 42
B_STORAGE 13, 42
BLK_INDEX_COMPOSITE

45
BLK_STORAGE 45
BND_INDEX_COMPOSITE

45
BND_INDEX_ID 45
BND_STORAGE 45
COMMENT 40
COMPRESS_ROLLBACK_

SEGMENT 10, 39
D_INDEX_DELETED_AT

43
D_INDEX_STATE_ROWID

43
D_STORAGE 43
F_INDEX_AREA 44
F_INDEX_FID 44
F_INDEX_LEN 44
F_STORAGE 44
GEOMETRY_STORAGE

138, 144, 149
RAS_INDEX_ID 45
RAS_STORAGE 44
S_INDEX_ALL 44
S_INDEX_SP_FID 44
S_STORAGE 44
SDO_COMMIT_INTERNAL

50
SDO_INDEX 50
SDO_INDEX_SHAPE 50
SDO_LEVEL 50
SDO_MAXLEVEL 50
SDO_NUMTILES 50
SDO_ORDCNT 50
SDO_SRID 50, 150
SDO_VERIFY 51
UI_NETWORK_TEXT 40
UI_TEXT 40

DBTUNE storage parameters 31
DBTUNE table 2, 31, 65
dbtune.sde 2, 24, 31, 41

declining resolution pyramid 129
deletes table

sizing of 120
direct connect 3

F

feature class 9
feature classes

creating 24
feature table 141

sizing of 118

G

giomgr.defs parameters
AUTOCOMMIT 9, 11

Graphics Interchange Format
(GIF) 127

grids
defined 139
determining the number of

levels 142
examples 142
levels 139
size impact on spatial queries

141
use in rebuilding spatial index

140
using sdelayer to determine

optimum size 142
gsrvr process 3

I
indexes

sizing of 126
init.ora 24, 101

J

Joint Photographic Experts Group
(JPEG) 127

L

layers
design for faster spatial queries

142
grid levels on 139
statistics for grid cell size 142

LIBRARIAN libraries 66
listing

spatial index statistics 142
load-only I/O mode 66
load-only mode 64
LONG RAW 63, 102, 137

M

MapObjects 62
mmsetup.sql 106
multiversioned 64

ii ArcSDE Configuration and Tuning Guide for Oracle

MVTABLES_MODIFIED table
12

N

national language support 4
network tables

sizing of 120
normal I/O mode 66
normal_io 64

O

OnLine Transaction Processing
(OLTP) 7, 12

OpenGIS 147
Oracle

ALTER DATABASE DROP
LOGFILE GROUP 9

ALTER SYSTEM
CHECKPOINT 7

ALTER SYSTEM SWITCH
LOGFILE 9

ANALYZE statement 30
archiving 7
buffer cache 26
control files 6
CREATE INDEX statement

42, 52
CREATE TABLE statement

41, 52
data block 128
database backup 93
database creation 16
database files 6
database recovery 93
DEFAULT_TABLESPACE

52
disk I/O contention 5, 11, 13
granting privileges 20
GROUP BY clause 11
instance 75, 86
listener.ora file 77
log switch 7
memory 24
Net8 Configuration Assistant

76
Net8 listener 75
NLS_LANG 91
online redo log files 6, 7, 15,

95
online redo modifying 8
optimal rollback segment

storage parameter 11
ORDER BY clause 11
Redo log buffer 25
rollback segment 9, 15
SGA 26
shared pool 26
sort area 11, 27

System Global Area (SGA) 24
TCP/IP network protocol 76
tnsnames.ora 86
tnsnames.ora file 85
tuning 5
USER_TABLESPACES 52
V$ROLLSTAT 10
V$SYSSTAT 27

Oracle database
recovering 100

Oracle datafiles
rollback segment 15

Oracle init.ora parameter
SORT_AREA_SIZE 11, 15

Oracle init.ora parameters
ARCHIVELOG 96
CONTROL_FILE_RECORD_

KEEP_ TIME 6
DB_BLOCK_BUFFERS 26
DB_BLOCK_SIZE 17
DB_DOMAIN 83
DB_NAME 83
LOG_ARCHIVE_DEST 95
LOG_ARCHIVE_START 95
LOG_BUFFER 25, 26
LOG_CHECKPOINT_

INTERVAL 7
LOG_CHECKPOINT_

TIMEOUT 7
NOARCHIVELOG 96
OPTIMIZER_MODE 28
PRE_PAGE_SGA 28
SHARED_POOL_SIZE 26
SORT_AREA_SIZE 27

Oracle instance 1
Oracle NET8 102
Oracle Net8 parameter

GLOBAL_DBNAME 77
Oracle sde user

creating 17
Oracle Spatial 50

coordinate dimension 150
coordinate reference 150
fixed index 150
hybrid index 150
hybrid quadtree index 148
measures 155
quadtree fixed index 148
Rtree index 148, 150
SDO_FILTER function 152
SDO_GEOMETRY 147
SDO_GYTPE 151
SDO_POINT 151
SDO_SRID 151
SDO_VALIDATE function

154
SE_CAD column 152
SE_SHAPE 151
SRID 148

Oracle spatial object
storing geometry in 3, 39

Oracle stored procedures
DBMS_LOCK 18
DBMS_PIPE 18

Oracle tablespaces
ArcSDE system 12
business and index 13, 17
INDX 13, 16
rollback 9
system 9, 21
temporary 11, 15, 27, 29
USER 13, 16

original equipment manufacturer
92

P

performance
guidelines for faster spatial

queries 141
physical RAM 26
privileges

granting 64
PROCESS_INFORMATION

table 18

R

raster band auxiliary table 134
raster band table 132
raster bands 127
raster blocks table 134
raster columns 66, 127

creating 24
raster data tables

sizing of 123
raster table 132
RASTER_COLUMNS table 130
read-only databases 8
replication 101

multimaster synchronous 103
read-only snapshot 109

rossetup.sql 110

S

SDE
spatial query process 141

sde export file 9
SDE_EXCEPTIONS 145
SDE_LOGFILE_DATA 40
SDE_LOGFILES 40
sde2cov 67
sde2shp 67
sde2tbl 67
SDEBINARY 38, 138, 144
sdedbtune 2, 32
sdeexport 67
sdegroup 61
SDEHOME 17, 31, 52, 86

 Index iii

sdeimport 61, 65, 66
sdelayer 22, 61, 63, 65, 153

spatial index operations 141
SDELOB 38, 138
sdesetupora8i 75
sdetable 61, 63, 67, 155

update_dbms_stats 29
sdeversion 39
SE_stream_set_spatial_constraints

141
sequence generator

states table 105
sequence generators

offsetting for replication 104
server manager

managing the spatial index
140

shapefile 9
shapes

editing impact on the spatial
index 140

grid levels and 140
shared memory 24
shp2sde 61, 64, 65
shpinfo 65
spatial index table 15, 139, 141

sizing of 119
spatial indexes

building by SDE 140
examples 142
listing statistics about 142
load-only mode and 140
rebuilding process after editing

140
tuning for performance 141

spatial queries
process in SDE 141
spatial index and 141

SPATIAL_REFERENCES table
150, 153

STATES table 12
STATES_LINEAGE table 12
storage parameters 2

T

tables
creating 24

tagged image file format (TIFF)
127

task manager 25
tbl2sde 61
three-tiered architecture 3
two-tiered architecture 3

U

US7ASCII 91

V

version delta tables
sizing of 119

VERSIONS table 12
virtual memory 25
vmstat 25

 iv

	ArcSDE Configuration and Tuning Guide for Oracle
	Chapter 1: Getting started
	Tuning and configuring the Oracle instance
	Arranging your data
	DBTUNE storage parameters
	Spatial data storage choices

	Creating spatial data in an Oracle database
	Connecting to Oracle
	National language support
	Backup and recovery

	Chapter 2: Essential Oracle configuring and tuning
	How much time should you spend tuning?
	Reducing disk I/O contention
	Creating a database using the Oracle installer
	Defining the database’s components and their size
	Arranging the database components
	Creating the database
	Creating the Oracle SDE user space
	Creating Oracle users
	Updating the DBTUNE file
	Creating tables, feature classes, and raster column

	Setting the Oracle initialization parameters
	Managing Oracle’s memory
	Redo log buffer
	Shared pool
	Buffer cache
	Sort area
	Prepage the SGA

	Enabling the optional Oracle startup trigger
	Updating Oracle statistics
	Updating ArcSDE compressed binary statistics
	Updating Oracle Spatial geometry type statistics

	Chapter 3: Configuring DBTUNE storage parameters
	The DBTUNE table and file
	DBTUNE parameters
	The structure of the DBTUNE file
	The structure of the DBTUNE table

	Managing the DBTUNE table
	Initializing the DBTUNE table
	Customizing the DBTUNE file
	Editing the DBTUNE table
	Adding keywords to the DBTUNE table

	Using the DBTUNE table
	Selecting the configuration string
	Table parameters
	Index parameters

	Defining the storage parameters
	The business table storage parameter
	The business table index storage parameters
	Multiversioned table storage parameters
	Feature class storage parameters
	Raster table storage parameters

	Arranging storage parameters by keyword
	DEFAULTS keyword
	Setting the system table DATA_DICTIONARY configuration keyword
	The TOPOLOGY keyword
	The IMS METADATA keyword
	Setting the storage format—the GEOMETRY_STORAGE p
	Setting the COMPRESS_ROLLBACK_SEGMENT storage parameter
	Changing the ATTRIBUTE_BINARY storage format
	Changing the appearance of DBTUNE configuration keywords in the ArcInfo user interface
	Adding a comment to a configuration keyword
	LOG FILE configuration keywords
	Network class composite configuration keywords
	The NETWORK_DEFAULTS configuration keyword

	ArcSDE storage parameters for Oracle Spatial
	Oracle default parameters
	Converting previous versions of SDE storage parameters into the DBTUNE table
	The complete list of ArcSDE 8.1 storage parameters

	Chapter 4: Managing tables, feature classes, and raster columns
	Data creation
	Creating and populating a feature class
	Appending data to an existing feature class

	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications
	Loading data
	Versioning your data
	Granting privileges
	Creating a raster column with ArcCatalog

	Registering a business table
	Registering a table as NONE or USER maintained
	Registering a table as SDE maintained
	Registering a table as multiversioned

	Chapter 5: Connecting to Oracle
	Locating the ArcSDE Components
	Setting up an ArcSDE Service
	Setting up a direction connection
	Oracle Net8 Listener

	Creating the Net8 listener service
	Starting the Net8 listener service
	Net8 Client installation and configuration
	Connecting to Oracle from an ArcSDE client application
	Configuring the ArcSDE /etc directory
	Locating the dbinit.sde file (Unix and Windows)
	Resolving the Oracle server
	Resolving system or environment variables
	Choosing a service vs. a direct connection

	Examples of a direct connection
	Example 1 – Local connection
	Example 2 – Remote connection using LOCAL or TWO_
	Example 3 – Remote connection without using LOCAL

	Example of connecting through an ArcSDE service
	Example – Connecting to a service running on a

	Troubleshooting direct connection problems
	Oracle server was not started
	Oracle listener was not started
	Oracle username or password are incorrect
	Net service name does not exist
	Net service name cannot be resolved in listener
	The Oracle instance is not at least an Oracle 8.1 instance

	Chapter 6: National language support
	Oracle database character sets
	Setting the NLS_LANG variable on the client
	Setting the NLS_LANG variable for Windows NT clients

	Chapter 7: Backup and recovery
	Recording Database Changes
	Control files
	Redo log files
	Archiving redo log files
	Sizing the redo log files

	Database backup
	Hot backup
	Cold backup
	Database export
	Frequency of backups
	Scripting the backup

	Database recovery
	Database failure and recovery modes

	Chapter 8: Replication
	Setting up advanced replication
	Installing Oracle Advanced Replication
	Replication Manager
	Adding Advanced Replication init.ora parameters
	Establishing NET8 communications between databases
	Converting LONG RAW data to LOB data
	Granting privileges to remote schema users
	Oracle 8i users require patch 1721870

	Setting up read-only snapshot replication
	Duplicating the tables of a geodatabase
	Creating the replication environment
	Updating rossetup.sql
	user0
	user_password0
	sys_password
	system_password
	sde_password
	master_site
	snapshot_site
	default_tablespace
	temporary_tablespace
	masdef_site_gdb_name
	snapshot_site_gdb_name
	group_name

	Running rossetup.sql

	Editing a replicated database with ArcMap
	Using the Oracle replication manager

	Index

